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4.  INTRODUCTION 
The HBCU/MI Partnership Training Award project, “Photonic Breast Tomography and 

Tumor Aggressiveness Assessment,” is designed to establish a breast cancer training and research 
program at the City College of New York (CCNY) through close collaboration with the 
researchers at the Memorial Sloan Kettering Cancer Center (MSKCC). The focus of the training 
component of the project is to familiarize the CCNY researchers who happen to be physical 
scientists and engineers to the biological aspects of cancer research through attending relevant 
courses, and cancer research practicum through laboratory rotations. The objectives of the 
research component of the project are to develop optical imaging and spectroscopic approaches 
to (a) distinguish between aggressive and slow growing, metastatic and non-metastatic tumors, 
(b) non-invasively detect and diagnose breast tumors at early stages of growth.  

During the fourth reporting period (June 15, 2010 – June 14, 2011) covered by this report, 
the major research thrust was on developing near-infrared (NIR) light-based experimental 
methods and numerical algorithms for detection of targets in breast tissue simulating model 
medium with the goal of detecting breast tumors at early stages of growth. The trainees also 
continued learning the magnetic resonance spectroscopic imaging (MRSI) with selective 
multiple-quantum coherence transfer (SelMQC) sequence to explore its potential to investigate 
the glycolytic activity of tumors.  

 
5. BODY 

We have made substantial progress in developing  non-invasive near-infrared optical 
imaging modalities for early detection of breast cancer (Specific Aim 4) that we started during 
Year 1 of the project [1] and pursued and reported in the subsequent years [2,3].  The goal of the 
research is to develop optical spectroscopy and imaging approaches that use the near-infrared 
light to obtain three-dimensional (3-D) tomographic images of human breast to enable detection, 
localization, and possible diagnosis of tumor(s) in the breast. Early detection of breast tumor 
with requisite sensitivity and specificity is a daunting task and we continued development of 
different approaches, which include: 

• Diffuse Optical Imaging using Decomposition Methods; 
• Time Reversal Optical Tomography (TROT); and  
•  Finite element method (FEM). 

We provide a brief outline of activities and accomplishments in these areas, and refer to 
appended materials for detailed description where applicable. 

5.1. Diffuse Optical Imaging Using Decomposition Methods 

We have previously reported on the development of Optical Tomography using Independent 
Component Analysis (OPTICA), extended it to include multi-wavelength probing and explored 
its efficacy on a more realistic model breast (Specific Aim 4, Task #15 and Task #16) [2-4]. 
Diffuse optical imaging (DOI) for detection and retrieval of location information of targets in a 
highly scattering turbid medium may be treated as a “blind source separation” (BSS) problem 
[5]. Independent Component Analysis (ICA), the basis for OPTICA, is one of the different 
matrix decomposition methods for solving the BSS problem and retrieving desired information. 
Other decomposition methods include Principal Component Analysis (PCA) [6] and Non-
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negative Matrix Factorization (NMF) [7]. The three algorithms have different assumptions, 
which may lead to different favored conditions. 

ICA assumes the signals from different targets to be independent of each other, and 
optimizes a relevant measure of independence to obtain the ICs associated with different targets 
[4]. The position co-ordinates of targets in three dimensions are determined from the individual 
components separately. PCA [6] assumes that the PCs contributing to the signal are uncorrelated 
and explain the most variance in the signal. NMF [7] seeks to factorize a matrix into two non-
negative matrices (component signals and weights) and requires the contributions to signal and 
the weights of the components to be non-negative. It does not imply any relationship between the 
components. Our objective was to test and compare the efficacy of these three approaches in 
solving the DOI problem. We used both simulative data and experimental data for absorptive and 
scattering targets embedded in model scattering media. Details of the theoretical formalism, 
numerical algorithms, simulation and experiment are detailed in the pre-print of a submitted 
paper (attached as Appendix 3); only a brief overview is presented below.  

 Blind source separation (BSS), also known as blind signal separation is a general problem in 
information theory that seeks to separate the contributions from different sources to the measured 
signal, which is a weighted mixture of signals from those sources. Assuming the source signals 
are linearly mixed, the BSS problem can be presented in matrix notation as, X=AS, where X 
represent measured signal, A is a mixing or weighting matrix, and S represents signals from the 
sources. The objective of BSS is to retrieve the source signals and their weights from the 
measured signal. Due to the lack of prior knowledge of the source signals, statistical analysis 
methods, such as ICA, PCA and NMF are used to retrieve source information. 

In DOI one measures the signal at the sample boundary, which is a weighted mixture of 
contributions from embedded targets. The signal is the perturbation in the light intensity 
distribution at the sample boundary, and ideally is the difference between the signal recorded 
with the target(s) and that without the targets. In practice signal without the targets is reasonably 
approximated by an average of the signals recorded for different scanning positions of the 
sample. DOI is thus a BSS problem in the optical domain, and the problem was investigated 
using three matrix decomposition approaches, ICA, PCA and NMF, for absorptive and scattering 
targets.  

In simulation, the sample was considered to be a 40-mm thick uniform slab of scattering 
medium, as shown in Fig. 1 of Appendix 3. Its absorption and diffusion coefficients were taken 
to be µa = 0.003 mm-1 and D = 1/3 mm, respectively, which are similar to the average value of 
those parameters for human breast tissue. An absorptive and a scattering point target were placed 
at (50, 60, 15) mm and (30, 30, 25) mm, respectively. The absorption coefficient of the 
absorptive target was set to be higher than the background with ∆µa = 0.01 mm-1, while the 
diffusion coefficient was taken to be the same as that of background. The diffusion coefficient of 
the scattering target was set to be lower than the background (higher scattering coefficient) with 
∆D = -1 mm, while the absorption coefficient was taken to be the same as the background. The 
incident CW beam was assumed to step scan the sample at 21×21 grid points covering 80×80 
mm2 area, with a step size of 4 mm. Light on the opposite side was recorded at 41×41 grid points 
covering the same area. Multiplicative Gaussian noise of 5% was added to the simulated data. 
The data matrix X was then obtained, and analyzed using the three different algorithms.  
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 To evaluate the efficacy of the decomposition methods in experiments, we carried out two 
different experiments with two different samples. The first sample used a 250 mm × 250 mm × 
50 mm transparent plastic container filled with Intralipid-10% suspension in water as the 
background medium. The concentration of Intralipid-10% was adjusted to provide [8,9] an 
absorption coefficient of µa ~ 0.003 mm-1, and a transport mean free path lt ~ 1.43 mm at 785 
nm. The second sample used a similar container with dimension of 250 mm × 250 mm × 60 mm 
filled with Intralipid-20% suspension in water. The concentration of Intralipid-20% was adjusted 
to provide [8, 9] µa ~ 0.003 mm-1, and lt ~ 1 mm at 790 nm. These optical parameters of the 
medium were selected to be similar to those for human breast tissue. The thickness of the 
samples was also comparable to that of a typical compressed female human breast. 

In the first experiment, two absorptive targets were embedded in the medium. The targets 
were ~ 10-mm diameter glass spheres filled with a solution of Indo-cyanine green dye in water. 
The absorption coefficient µa was adjusted to be 1.15 mm-1 at 785 nm, with µs approximately the 
same as that of the background medium. The targets were placed at (57.2, 18.1, 20.0) mm and 
(19.9, 48.1, 25.0) mm, respectively. In the second experiment, two scattering targets were 
embedded, which were also ~ 10 mm diameter glass spheres, filled with Intralipid-20% 
suspension in water. The transport mean free path, lt was adjusted to be 0.25 mm, with scattering 
coefficient µs ≈ 11 mm-1, and absorption coefficient µa same as the background medium. The 
targets were placed in the mid-plane (z = 30 mm) in the container with a lateral distance of 40 
mm from each other (center to center).   

The experimental setup (shown schematically in Fig. 6 of Appendix 3), was based on what 
we assembled (Specific Aim 4, Task #14) earlier in the project [1]. A 10-mW 785-nm diode laser 
beam was used to illuminate the first sample, while a 100-mW 790-nm diode laser beam was 
used for the second sample. The input surface (source plane) of the samples was scanned across 
the laser beam in an x-y array of grid points to realize the multi-source interrogation of the 
samples. The transmitted light from the exit surface (detector plane) was recorded by a 1024 
pixel ×1024 pixel (pixel size = 24 µm) CCD camera (Photometrics CH350) equipped with a 60-
mm focal-length camera lens. Each pixel of the CCD camera can be considered to be a detector 
implementing the multi-detector signal acquisition arrangement. A set of 16-bit 1024 pixel 
×1024 pixel images were acquired. The two samples were scanned in an array of 11×12 and 
11×15 grid points, respectively, with a step size of 5 mm in both cases. The processes of 
scanning and data acquisition were controlled by a personal computer. At all scan positions, raw 
transillumination images of the samples were recorded by the computer for further analysis. A 
16-bit 1024 x 1024 pixels CCD camera recorded the transmitted signal. The sample was scanned 
across the laser beam in a 16x26 x-y array of grid points and a two-dimensional transmission 
image was recorded for each position for each wavelength to meet the multi-source multi-
detector (each pixel of a CCD camera being a detector element) imaging arrangement. The 
resulting data was analyzed using the numerical algorithm of ICA, PCA and NMF. The details of 
the experimental arrangement, data acquisition, processing and analysis methods are presented in 
attached Appendix 3.  

The key result from simulated data is that the positions and optical strengths of the targets 
retrieved by ICA, PCA and NMF algorithms in excellent agreement with the known values.  

The results from the experiments using absorptive and scattering targets demonstrate that 
overall, all three algorithms detect and locate the scattering and the absorptive targets with good 
accuracy, the maximum deviation of any one coordinate from the known value being ~3 mm. 
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The (x, y, z) positions of the targets were retrieved with good accuracy. The decomposition 
provided by ICA is “cleaner” than that of the PCA. PCA did not clearly separate the two 
absorptive targets used in the first experiment. NMF decomposition seems to provide residue-
free “cleaner” images than the other two methods in this study. Appendix 3 provides further 
discussion on implication of results.  

5.2. Time Reversal Optical Tomography   
We have been pursuing development of the Time Reversal Optical Tomography (TROT) 

approach, [2, 3] in our on-going quest for fast and accurate methods for detection and localization 
of tumours in breast, and for detection of margins during surgical removal of breast tumours 
(Specific Aim 4).   

The time reversal (TR) invariance, the basic symmetry that commonly holds in microscopic 
physics, forms the basis for macroscopic imaging [10] in TROT. TROT also adapts and 
incorporates, in optical domain, the vector subspace classification method, Multiple Signal 
Classification (MUSIC). MUSIC was developed by Devaney and co-workers for finding the 
location of scattering targets whose size is smaller than the wavelength of acoustic waves or 
electromagnetic waves (radar) used for probing the homogeneous or inhomogeneous background 
medium in which the targets were embedded [11, 12]. In optical imaging application, a response 
matrix represents the transport of light from multiple sources through a turbid medium with 
embedded targets to an array of detectors. The response matrix is constructed from the 
experimental data that represent the perturbation in light intensity distribution on the sample 
boundary due to the presence of target(s). The ‘time reversal (TR) matrix’ is constructed by 
multiplying the response matrix by its transpose matrix for continuous wave illumination (by 
adjoint matrix for frequency-domain case). Mathematically, the TR matrix is equivalent to transfer 
of light from multiple sources through a turbid medium with embedded targets to an array of 
detectors, and back, and is similar to the time-reversal matrix used in the general area of array 
processing for acoustic and radar time-reversal imaging [12]. The eigenvalue equation of TR 
matrix is solved, and the signal and noise are separated into orthogonal subspaces, using an L-
curve regularization method. Then a pseudo spectrum is calculated directly for all voxels in the 
sample using MUSIC [11, 12].  Pseudo tomographic images can be generated using pseudo values. 
Locations of targets are determined by the global maxima (or local maxima in low SNR case) 
components in the pseudo spectrum. Details of the theoretical formalism and numerical algorithms 
of TROT along with tests of its efficacy using simulative and experimental data have been detailed 
in a manuscript submitted for publication in and is attached to this report as Appendix 4. We will 
present only the key results in the body of this report, and refer to Appendix 4 for further details. 

First we tested the potential of TROT in an ideal situation using a challenging problem in 
simulation that involved detecting and locating 6 targets embedded in a 40-mm thick breast tissue-
simulating scattering medium. The six point-like absorptive targets, with absorption coefficient 
difference of ∆µa = 0.01 mm-1 from the background, were placed at A (24 mm, 26 mm, 9 mm), B 
(38 mm, 38 mm, 15 mm), C (38 mm, 38 mm, 21 mm), D (40 mm, 38 mm, 21 mm), E (44 mm, 42 
mm, 21 mm) and F (30mm, 30mm, 31 mm), respectively. The origin (0 mm, 0 mm, 0 mm) was 
located at the upper-left corner of the input boundary (source boundary) of the sample. As can be 
seen from the assigned coordinates, targets C and D are located at two adjacent grid points, and are 
close to target E, and these three targets are located in the same z layer. Consequently, targets C 
and D are expected to be very difficult to resolve, and hard to distinguish from target E. Target B 
and C have the same lateral position x and y, and different depths. Target A is close to the source 
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plane, while F is close to the detector plane. As detailed in Section 4 of Appendix 4, TROT 
formalism could detect all 6 targets and retrieved their locations to be at the exact known target 
locations. With the highly encouraging result from simulation even for a considerably challenging 
task, we proceeded to test the approach for the realistic situation of detecting and locating targets 
from experimental data. 

We have experimentally investigated the efficacy of TROT by imaging both absorptive and 
scattering target(s) embedded in Intralipid-20% suspension in water, a model medium whose 
optical absorption and scattering properties can be adjusted by varying the concentration. The 
initial results for the absorptive target(s) were presented in the Third Annual Report [3], and are 
detailed in Appendix 4. Here we present a brief account of the study with a scattering target and 
leave the details for Appendix 4.  

The sample used a 250 mm × 250 mm × 60 mm transparent plastic container filled with 
Intralipid-20% suspension in water as the background medium. The concentration of Intralipid-
20% was adjusted to provide an estimated [8,9] absorption coefficient µa ~ 0.003 mm-1 at 790 nm, 
and a transport mean free path lt ~ 1 mm, which were similar to the average values of those 
parameters for human breast tissue, while the cell thickness of 60 mm was comparable to thickness 
of a typical compressed breast. The target was a glass sphere of diameter 10 mm filled with 
Intralipid-20% suspension in water to provide a transport mean free path lt of 0.25 mm, and a 
scattering coefficient µs ≈ 11 mm-1. The depth of the scattering target was varied to explore the 
efficacy of TROT in locating and characterizing a scattering target. 

A multi-source interrogation and multi-detector signal acquisition scheme, shown in Fig. 2 of 
Appendix 4, was used to acquire data. A 100-mW 790-nm diode laser beam was used to illuminate 
the samples. A 1024 × 1024 pixels charge coupled device (CCD) camera equipped with a 60-mm 
focal-length camera lens was used on the opposite side of the sample to detect the transmitted light 
on the boundaries of the slab samples (detector plane). The pixel size was 24 µm. The multi-source 
illumination scheme was realized by scanning the sample across the laser beam in a two-
dimensional x-y array of grid points using a computer-controlled translation stage. The sample was 
scanned across the laser beam in an array of 9 × 9 grid points, with a step size of 5 mm. The 
scanning and data acquisition processes were controlled by a personal computer (PC).  

The depths (z-positions) of the target that were used in the experiment are: 15 mm, 20 mm, 25 
mm, 30 mm, 35 mm, 40 mm, and 45 mm. A typical cross-section pseudo image and the 
corresponding spatial profiles are displayed in Fig. 1(a) when z = 30 mm. It is compared to the 
simulation results with 20% Gaussian noise (Fig. 1(b)). The lateral (x, y) spatial profiles of the 
pseudo image generated using simulated data are considerably wider, while the axial (z) spatial 
profile is narrower than those obtained using experimental data, while the peak values from the two 
cases are of the same order. The retrieved target positions are listed in Table I. 

It is evident from the results in Table I, that the TROT formalism locates the positions of the 
scattering target with considerable accuracy. The lateral (x, y) positions are determined with higher 
accuracy than the axial (z) position. The resolution of experimental result seems to be better than 
the simulation, which we attribute to the noise level of 20% used in simulation which presumably 
is higher than the experimental error. 

A comparison of experimental results for scattering and absorptive targets validate the common 
notion that it is more challenging to locate and image scattering targets than absorptive targets in a 
highly scattering medium. The results from experiment and simulation show that TROT, being a 
non-iterative approach, is a faster and less computation intensive approach for detecting small 
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5. 3. Finite Element Method for Optical Tomography 

We are exploring the Finite Element Method (FEM) that has found considerable use in optical 
tomography [13], as another viable approach to optical mammography (Specific Aim 4, Task# 17 and Task# 
18).  One of the objectives is to use FEM to obtain optical properties around the suspect sites that TROT can 
locate with high accuracy without needing long computation time. While FEM is more computation 
intensive than TROT, using it only over the limited suspect sites located by TROT will reduce the 
computation time significantly.   

We pursued testing and adaptation of a program called NIRFAST [14] developed by researchers at 
Dartmouth College for modeling NIR frequency domain light transport in tissue based on FEM. We have 
evaluated the program in simulation under different conditions that include number of targets, their 
location, size and optical properties, sample geometry, source and detector positions, and noise level. It is 
tested for both two-dimensional (2-D) and three-dimensional (3-D) absorptive and scattering targets.  in 
2D and 3D problems. Some examples are shown as below. 

Two-Dimensional Problems 

First, we considered the sample to be 10-cm diameter circle, with background optical properties: µa = 
0.01 mm-1, lt = 1 mm (µs’ = 1 mm-1). Sixteen (16) optical fibers are assumed to be placed at the edge 
around the circle, equally spaced and used as both sources and detectors. In forward model, the source 
positions are considered to be located 1 mm below the surface [15], where the initial scatterings of the 
incident photons are assumed to occur. To avoid the strong boundary effect, when one fiber is used as the 
source, other 15 fibers are used as detectors. Measurements are taken with every fiber used in turn as a 
source resulting in accumulation of data using 240 source and detector pairs located 1 mm below the edge 
around the circle. Two absorptive and two scattering circular targets are embedded as follows. 

Two absorptive and two scattering circular targets with different optical properties and sizes are 
embedded. The center of the circle is set to be the origin of the coordinates (0, 0) mm. The position, 
optical property and size of the four targets are listed in Table II. 
 

Table II. Target position, property and size 
 

Target#  Position (x, y) (mm) µa (mm‐1) µs’ (mm‐1) Radius (mm) 

1  ‐20, ‐20  0.015  1  5 

2  20, 20  0.02  1  2.5 

3  20, ‐20  0.01  2  5 

3  ‐20, 20  0.01  4  2.5 

 

The mesh of the sample and the source (*), detector (detector) and target (circle) positions are shown in 
Fig. 2. Forward model data in frequency domain with modulation frequency 100 MHz was generated 
using NIRFAST. Background random noise level of 1% was added and compared with zero-noise case. 
The data is then used for reconstruction also using NIRFAST through an iterative process, where the 
forward model data is repeatedly calculated while varying the optical properties of every voxel, and 
compared with the original data. The uniform background property (µa = 0.01 mm-1, µs’ = 1 mm-1) was 
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used as the starting point. The optimization of 
the property is approached by minimizing the 
difference between the reconstructed forward 
model data and the original data. Maps of 
absorption and scattering properties are 
reconstructed simultaneously, as shown in Fig. 3. 
As shown in Fig. 3, all four targets are detected, 
and both absorption and scattering properties are 
reconstructed. The reconstructed target sizes are comparable to the actual ones. When no noise is added, 
the reconstructed optical properties of the large targets are close to the known values, while the properties 
of the small targets are not quite accurate. While 1% random noise was added, the sizes of the large 
targets are still close to actual values, and the error in reconstructed properties is about 20%. However, the 
small targets are hardly detected. The reconstruction result can be improved by changing conditions, such 
as, higher modulation frequency, more source-detector pairs etc.  

Next we considered a rectangular sample of size 80 mm x 40 mm, with µa = 0.01 mm-1, lt = 1 mm (µs’ = 
1 mm-1). 13 sources and 13 detectors are located on the entrance side and exit side, respectively. The 
sources are considered to be located 1 mm below the side, and used one at a time successively. 
Transmitted data are detected by 13 detectors for all 13 sources. In total, 169 source and detector pairs are 
used. One absorptive and one scattering circular targets are embedded. The center of the rectangle is set to 
be the origin of the coordinates. The position, property and size of the targets are listed in Table III. 

Table III. Target position, property and size 

Target#  Position (x, y) (mm) µa (mm‐1) µs’ (mm‐1) Radius (mm) 
1  ‐10, 0  0.02  1  5 
2  10, 0  0.01  2  5 

Fig. 2. Sample mesh and the source, 
detector, target positions 

No noise 

1% Noise 

Fig. 3. Reconstructed absorption and scattering properties 
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Fig. 4(a). Sample mesh and source/detector/target positions 

The mesh of the sample with the source (*), detector (+) and target (o) positions is shown in Fig. 4(a). 
Frequency-domain data is generated with modulation frequency 100 MHz, and 1% random noise was 
added and compared to the situation with no noise. 

NIRFAST was then run using the forward model data. The reconstructed images using the absorption and 
scattering property maps are shown in Fig. 4(b). 

 

 

Fig.4(b). Reconstructed absorption and scattering properties 

No noise 

1% Noise 
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As shown in Fig. 4(b), both absorptive and scattering targets were detected, and both absorption and 
scattering properties were reconstructed. The reconstructed target sizes are comparable to the actual sizes 
when no noise is added. While 1% random noise is present, the reconstructed size is larger. When no 
noise was added, the error in the reconstructed optical properties is about 25% for the absorptive target, 
and about 15% for the scattering target. When 1% random noise was added, the error in reconstructed 
properties is about 35% for the absorptive target, and about 30% for the scattering target. 

 Three-dimensional problems  

Next we considered three-dimensional absorptive and scattering targets.  The first sample was a cylinder 
of diameter 86 mm, and height 60 mm, µa = 0.01 mm-1, lt = 1 mm (µs’ = 1 mm-1). 240 source and detector 
pairs were used, and located in a manner similar to the 2-D circular problem discussed in the previous 
section in the cross-section of the middle plane (z = 0 mm) of the cylinder. One absorptive (scattering) 
spherical target was embedded at (x, y, z) = (20, 0, 0) mm. A discretized mesh of the cylindrical sample is 
shown in Fig. 5, along with the positions of the target (dark red), sources (green circle) and detectors 
(blue plus). Frequency-domain forward model data was generated with modulation frequency 100MHz 
and 1% random noise added compared with no noise present using NIRFAST, and then fed back into to 
reconstruct the absorption and scattering property maps of the sample. 

 

Fig.5. Sample mesh (left pane) and source/detector/target positions (right pane) 

  

Absorptive target 

An absorptive target is embedded, with µa = 0.1 mm-1, µs the same as background, and radius 5 mm. 
Reconstructed 3D image and a cross-section through the middle of the target are shown in Fig. 6(a) when 
there is no noise, and in Fig. 6(b) with 1% noise. 
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No noise: 

 

 

 

 

 

Figure 6(a). Reconstructed images (absorption and scattering properties) of an absorptive target under no 
background noise condition: (top) 3-D distribution of absorption coefficient; (bottom left) absorption coefficient 
distribution, and (bottom right) reduced scattering coefficient distribution through the cylinder center (z = 0) plane. 

 

 

 

 

µa 

µa µs’
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1% noise: 

  

 

 

Figure 6(b). Reconstructed images (absorption and scattering properties) of an absorptive target with 1% 
background noise: (top) 3-D distribution of absorption coefficient; (bottom left) absorption coefficient distribution, 
and (bottom right) reduced scattering coefficient distribution through the cylinder center (z = 0) plane. 

Both absorptive and scattering properties are reconstructed simultaneously. Even though it is an 
absorptive target, and the scattering property of the target is the same as that of the background, the target 
is also seen in the reconstructed scattering property map. The reconstructed target size is comparable to 
the actual size in the lateral direction, while much bigger in the z direction for both no noise and 1% noise 
level cases. The reconstructed absorptive property of the target is about 15% of the actual value. The 
results can be improved by using higher modulation frequency, and more source-detector pairs etc. 

µa 

µa µs’
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Scattering target 

A scattering target of radius 5 mm with µs’ = 10 mm-1, and µa the same as background is embedded and 
radius 5 mm. The 3D absorption and scattering characteristics maps were reconstructed in a manner 
similarly to that used for the absorptive target.   The reconstructed 3D image and a cross-section through 
the middle of the target are shown in Fig. 7(a) when the background noise level is considered to be 0 and 
in Fig. 7(b) when 1% noise is assumed to be present. 

No noise 

 

 

 

Fig. 7(a).  Reconstructed scattering and absorption properties of the single scattering target assuming 0 background 
noise (top) 3-D distribution of reduced scattering coefficient; (bottom left) absorption coefficient distribution, and 
(bottom right) reduced scattering coefficient distribution through the cylinder center (z = 0) plane. 

 

µa µs’

µs’
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1% noise: 

 

 

 

Fig 7(b) Reconstructed scattering and absorption properties of the single scattering target assuming 1% background 
noise: (top) 3-D distribution of reduced scattering coefficient; (bottom left) absorption coefficient distribution, and 
(bottom right) reduced scattering coefficient distribution through the cylinder center (z = 0) plane. 

Both absorptive and scattering properties were reconstructed simultaneously in this simulation. Even 
though it is a scattering target, it appears in the reconstructed absorption property map as well, especially 
for no-noise case. The reconstructed target size is comparable to the actual size in the lateral direction for 
both no noise and 1% noise level cases. The reconstructed scattering property of the target is about 11-
12% of the actual value for no noise and 1% noise level cases. 

Two targets 

The next situation involved two absorptive spherical targets embedded at (-20, 0, 0) mm and (20, 0, 0) 
mm of the sample volume.  Each of the spheres has a radius of 5 mm, µa = 0.1 mm-1 and µs is the same as 
background. The cylinder mesh and the source/detector positions and background optical characteristics 

µa µs’

µs’
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of the sample are the same as in the single target case reported above. Frequency-domain data were 
generated with modulation frequency of 100 MHz.  Figure 8(a) shows the reconstructed absorption and 
scattering coefficient maps of the target for 0 background noise, while Figure 8(b) shows those when 1% 
background noise is assumed. A cross-section image through the center of the cylinder is also shown. 

No noise: 

 

 

 

Fig. 8(a) Reconstructed scattering (and absorption) properties of the targets assuming 0 background noise: (top) 3-D 
distribution of absorption coefficient; (bottom left) absorption coefficient distribution, and (bottom right) scattering 
coefficient distribution through the cylinder center (z = 0) plane.  

 

 

 

 

 

µa µa 

µa µs’
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1% noise: 

 
 

 

Fig. 8(b). Reconstructed scattering (and absorption) properties of the targets assuming 1% background noise: 
 (top) 3-D distribution of absorption coefficient; (bottom left) absorption coefficient distribution, and (bottom right) 
scattering coefficient distribution through the cylinder center (z = 0) plane. 

Overall, the target size can be reconstructed with values comparable to the actual value for both 2D and 
3D cases. It is much more difficult to reconstruct optical property of the target(s) accurately. What is even 
more noteworthy is that even for an absorptive (scattering) target a reduced scattering (absorption) 
coefficient map was obtained in addition to the desired absorption (reduced scattering) coefficient map.  
This is not desirable and needs to be addressed. Higher modulation frequency and more source-detector 
pairs may be used to improve the results.  

The program is now being tested for slab geometry which is used in our project. We plan to pursue the 
FEM approach further for 3D image reconstruction and estimation of target optical properties. 

µa 

µa µs’
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5.4 Magnetic Resonance Spectroscopic Imaging Training 

The CCNY researchers pursued receiving training (Specific Aim 0, Tasks 2, 3 and 5) on magnetic 
resonance spectroscopic imaging (MRSI) in primary collaborating mentor (PCM) Dr. Koutcher’s 
lab at MSKCC. The thrust of the effort was to adapt MRSI approach for detection of lactate, 
which is expected to provide a window to explore tumor aggressiveness (Specific Aim 1).  Once 
MRSI is established as a reference technique, the aim is to develop optical spectroscopic 
techniques for lactate detection and validate the measurements against MRSI results. Since 
lactate level is associated with tumor aggressiveness, metastasis and treatment response [16], 
dependable and noninvasive means for detecting lactate in tumors is of immense interest.  

Conventional MRSI is not adequate for effective lactate detection since the overlapping lipid and 
adjacent water signals obscure lactate signal. The double frequency-selective multiple quantum 
coherence transfer (SelMQC) technique shows promise to detect lactate [17], and the trainees got 
involved in developing instrumentation and testing those for lactate detection using phantom in 
Year 3 of the project. They pursued their training further during this reporting period. We plan to 
undertake correlated MRSI with SelMQC and optical spectroscopic measurements to investigate 
the glycolytic activity of tumors, and explore their potential for tumor aggressiveness 
assessment.  

5.5 Research Proposal Development 
One of the proposed tasks (Specific Aim 0, Task# 7) involves developing at least one research 
proposal and submitting it to NIH or USAMRMC for funding. We submitted a pre-proposal 
entitled, “Multi-functional tumor-targeting nanocomposites and time-reversal optical imaging 
for early detection of breast cancer and prevention of micro-metastases” to the Idea Award 
(Collaborative Option) category of the 2011 Breast Cancer Research Program of CDMRP. S. K. 
Gayen (PI of this proposal) is the Initiating PI of the above-mentioned proposal. The 
Collaborative PI is Valeria Balogh-Nair of the CCNY Chemistry Department. A brief overview 
of the pre-proposal follows: 
 

Research Idea 

The objective of the proposed research is to develop multi-functional, tumor-targeting 
nanocomposites and near-infrared (NIR) optical imaging approaches for early detection of breast 
cancer, and prevention of micro-metastases that are responsible for majority of breast cancer 
mortality. The nanocomposite synthesis will use a multivalent dendrimer (a class of organic 
macromolecules) platform to incorporate fluorescent moieties (e.g., semiconductor quantum 
dots, or gold/silver nanoparticles) as contrast agents for imaging, and chemokine mimics for 
selective targeting of cancer cells and prevention of metastases. The high affinity of chemokine 
mimic’s ligands for chemokine CXCR4 receptors will ensure selective delivery of the 
nanocomposite to the target. A multi-source NIR probing and multi-detector signal acquisition 
arrangement along with a time-reversal image reconstruction algorithm will be used for fast 
detection of tumor and determination of its location in three dimensions.  
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Impact and Innovation 
The major impact of the proposed research is that it has the potential to provide a modality 

for early detection of breast cancer, and for prevention of metastases, the major cause of 
mortality. A broader potential impact is that the approach could be extended to other cancers 
using chemokine mimics directed to other chemokine receptors.  

The project is highly innovative in many ways. First, the synthesis process brings together 
the concept of multivalency, the idea of chemokine mimics for prevention of cancer cell 
migration, and use of dendrimers as stabilizers and nanoreactors for contrast agent synthesis. A 
combination of these novel ideas is proposed, to the best of our knowledge for the first time, as a 
multi-prong approach to fight the menace of breast cancer. Second, the affinity of the chemokine 
mimics to seven helix chemokine CXCR4 receptors obviates the need for a targeting vector.  The 
chemokine mimics will play the dual role of: (1) “homing devices” for selective delivery of the 
nanocomposite to the tumor sites; and (2) “prevention agents” interacting with the chemokine 
receptor sites to inhibit metastases. Third, the efficacy of noninvasive NIR imaging approach for 
early detection and potential diagnosis will be significantly enhanced through design of efficient 
contrast agent. Fourth, the idea of time-reversal optical tomography (TROT) is a new paradigm 
in diffusive optical tomographic (DOT) imaging. While currently pursued DOT approaches are 
iterative and computation time intensive, TROT is non-iterative and will be faster, which is a 
necessary condition for real-time imaging. TROT is designed for detecting and locating small 
targets and will be suited for early detection when tumors are small. Finally, the dendrimer 
platform with multivalent surface will enable incorporation of moieties that enhance other 
imaging modalities, such as, magnetic resonance imaging, enabling development of sought-after 
dual or multimodal imaging modules. 

 
6. KEY ACCOMPLISHMENTS 

• Key research accomplishments include: (a) development of Time Reversal Optical 
Tomography (TROT) (which is fast and minimally iterative), and demonstration of its 
efficacy in detecting small targets in a tissue simulating turbid medium; (b) adaptation of 
decomposition methods, such as, Principal Component Analysis (PCA) and nonnegative 
matrix factorization (NMF) for study of the diffuse optical imaging problem and comparing 
those with previously developed OPTICA (optical tomography using Independent 
Component Analysis); (c) exploring lactate detection using magnetic resonance 
spectroscopic imaging as a potential method for assessing tumor aggressiveness; (d) 
publication of several papers and presentation of research results in major conferences 
including Era of Hope (2011) (detailed in Section 7 below); and (e) investigating finite 
element method with the aim of using it as a complement to TROT for retrieval of optical 
parameters at the localized target sites.   

• The key training accomplishment includes the successful participation of physical scientists 
and engineers of CCNY research team in cancer biology research involving magnetic 
resonance spectroscopic imaging at the MRI research facility of MSKCC.  

• Development and submission of an independent research pre-proposal to BCRP 2011 is 
indicative of the CCNY team’s progress towards developing a sustainable breast cancer 
research program at CCNY.     

 



 22

7.  REPORTABLE OUTCOMES 

Publications 
(1) B. Wu, W. Cai, M. Alrubaiee, M. Xu and S. K. Gayen, “Three-dimensional time-reversal 

optical tomography,” in Multimodal Biomedical Imaging VI. Proceeding of SPIE, vol. 
7892, pp. 78920G-1 – 78920G-6 (2011). (Attached as Appendix 1) 

(2) M. Alrubaiee, B. Wu, M. Xu, W. Cai, and S. K. Gayen, “Multi-wavelength diffusive 
optical tomography using Independent Component Analysis and Time Reversal 
algorithms”, in Diffuse Optical Imaging III  Proceeding of SPIE-OSA, vol. 8088, pp. 
80880Y-1 – 80880Y-5 (2011). (Attached as Appendix 2) 

(3) Binlin Wu, M. Alrubaiee, W. Cai, M. Xu and S. K. Gayen, “Diffuse Optical Imaging 
using Decomposition Methods.” International Journal of Optics (Accepted for 
publication)  (Attached as Appendix 3) 

(4) Binlin Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Time reversal optical 
tomography: locating targets in a highly scattering turbid medium,” Opt. Express 19, 
21956-21976 (2011). (Attached as Appendix 4)  

Conference Presentations 
(1) M. Alrubaiee, Binlin Wu, W. Cai, M. Xu and S. K. Gayen, “Multi-wavelength diffusive 

optical tomography using independent component analysis and time reversal algorithms.” 
Paper 8088-33 presented at the SPIE/OSA European Conference on Biomedical Optics, 
22-26 May, 2011, Munich, Germany. 

(2) Binlin Wu, W. Cai, M. Alrubaiee, M. Xu and S. K. Gayen, "Three dimensional time 
reversal optical tomography," Paper 7892-15 presented at the SPIE's International 
Symposium on Biomedical Optics, BiOS '11/ Photonics West, 22-27 January, San 
Francisco, California.  

(3) Binlin Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Time reversal optical 
tomography for breast tumor detection”, Paper BC060114-2962 presented at the 6th Era 
of Hope 2011 conference of Department of Defense (DOD) Breast Cancer Research 
Program (BCRP), 2 – 5 August, Orlando, Florida. 

Research Proposal 
(1)  S. K. Gayen (Initiating PI), V. Balogh-Nair (Collaborating PI), “Multi-functional tumor-

targeting nanocomposites and time-reversal optical imaging for early detection of breast 
cancer and prevention of micro-metastases,” submitted to the Idea Award (Collaborative 
Option) category of the 2011 Breast Cancer Research Program of CDMRP.  

Research Personnel Development 
Xiaohui Ni, a researcher trained and supported in part by this grant has moved to the 
Department of Chemistry and Chemical Biology of Harvard University as a research 
associate.  

8.  CONCLUSION 
The work carried out during this reporting period: (a) culminated in CCNY research trainees’ 
participation in magnetic resonance spectroscopic imaging breast cancer research at MSKCC; 
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and (b) shows the potential for noninvasive detection and three-dimensional localization of a 
tumor within a breast with significant accuracy. The contrast is based on the differences in the 
light scattering and absorption characteristics of the tumor and normal breast tissue.  

 “So What Section” 

• The National Cancer Institute (NCI) has identified the development of imaging 
methodologies as an extraordinary opportunity for advancement in cancer research. Since the 
background of the CCNY team is in physical sciences and engineering, the training they 
received has provided them with necessary laboratory background in the biology of cancer 
research, and helping develop a knowledgeable multidisciplinary research force in the fight 
against breast cancer.  

• A recent study involving 35,319 patients underscores the influence of primary tumor location 
on breast cancer prognosis [18], and makes it imperative that breast cancer detection 
modalities to obtain three-dimensional (3-D) location of the tumor relative to the axilla be 
developed. The optical imaging techniques (TROT, OPTICA and other decomposition 
methods) being developed are an important steps in obtaining 3-D location of a tumor within 
the breast.  The methods are minimally iterative, fast, and designed for locating small targets, 
which make those suitable for detecting tumors in early stages of development when those 
are more amenable to treatment.  

• The study involving lactate detection holds promise for tumor aggressiveness assessment.   
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S. K. Gayen, “Diffuse Optical Imaging using Decomposition Methods.” 
International Journal of Optics (Accepted for publication)   
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cancer and prevention of micro-metastases,” submitted to the Idea Award 
(Collaborative Option) category of the 2011 Breast Cancer Research Program of 
CDMRP.  
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ABSTRACT   

Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly 
scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-
source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target 
location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the 
detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying 
the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to 
embedded objects.  

The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its 
axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the 
same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink 
(absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient µa ~ 
0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters 
for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target 
contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm 
apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.   

Keywords: Time reversal, MUSIC, diffusive optical imaging, optical tomography, biomedical imaging, breast cancer 
imaging, scattering medium, diffusion approximation 
 

1. INTRODUCTION  
Optical imaging of targets embedded in turbid media, such as a tumor in a breast, has attracted much attention in the last 
two decades. When a beam of light propagates through a highly scattering medium, photons are scattered and diffused 
into a broad area; phase coherence and polarization of light deteriorate; short pulses broaden; and consequently sharp 
images of the targets cannot be formed directly. Various algorithms have been developed to perform image 
reconstruction1-4. Inverse image reconstruction (IIR) is an ill-posed problem and search of reliable and fast approaches is 
an important and formidable task for optical imaging of human tissue such as breast. Recent inverse algorithms, such as 
Newton-Raphson-Marquart algorithms5 and direct linear inversion of 3-D matrices6, are time consuming. The iterative 
methods6, 7 may not ensure that the obtained result arrives at a “global minimum” or converge to a “local minimum”. 

Time reversal optical tomography (TROT)9,10 was introduced as a reconstruction method for imaging targets in 
turbid media non-invasively using light, following the development of TR imaging using multistatic radar signal8. 
Compared to other inverse methods which usually require iterations4, TROT is fast since there is no iteration involved. 
The signals and noise are separated into orthogonal subspaces.  A method similar to L-curve regularization is used to 
select the signal subspace. Then a pseudo spectrum is calculated directly for all voxels in the sample using the vector 
subspace method, MUltiple SIgnal Classification (MUSIC)8-10. Tomographic pseudo images can be generated using 
pseudo values. Locations and characteristics of targets are determined by the global maximum (or local maximum in low 
signal-to-noise (SNR) cases) components in the pseudo spectrum. 
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This paper is organized as follows. In section 2, the formalism of the TROT approach is presented. In section 3, the 
experimental arrangement, materials and parameters are described. In section 4, the TROT analysis on the experimental 
data and results are presented. Section 5 serves as discussion and summary. 

 

2. FORMALISM  
Using diffusion approximation of the radiative transfer equation (RTE), the scattered light due to small weak 
inhomogeneities (targets) embedded in a homogeneous medium to the first order Born approximation can be written as4 ߶௦௖௔ሺ࢘ௗ, ௦ሻ࢘ ൌ െܩ׬ሺ ,ௗ࢘ ,࢘ሺܩሻܿ࢘௔ሺߤߜሻ࢘ ࢘௦ሻ݀ଷ࢘ െ ሺܩ࢘׏ሻܿ࢘ሺܦߜ׬ ,ௗ࢘ ሻ࢘ · ,࢘ሺܩ࢘׏  (1) ,  ࢘௦ሻ݀ଷ࢘

where rs, rd, and r are the positions of a point-like source of unit power, detector and target, respectively; G(r, rs) and 
G(rd, r) are the Green functions that describe light propagations from the source to the target and from the target to the 
detector, respectively; δµa and δD describe the differences of absorption and scattering properties between the targets 
and the background medium, respectively; and c is the light speed in the medium. For an absorptive target, a matrix form 
of the response matrix K is constructed as ൛ܭ௜௝ൟ ൌ ൛∑ ,௜࢘ௗሺܩ ,௠ࢄ௦൫ܩ௠ሻ߬௠ࢄ ௝൯ெ௠ୀଵ࢘ ൟ, (݅ ൌ ڮ,1,2 ௗܰ; ݆ ൌ ڮ,1,2 , ௦ܰ), 
where  ࢘௜, ࢘௝ and ࢄ௠ are locations of the ݅௧௛ detector, ݆௧௛ source and ݉௧௛ target, respectively; ௦ܰ, ௗܰ and M are the 
numbers of sources, detectors and targets, respectively. It is assumed the number of targets is less than the number of 
sources and detectors, M < min( ௗܰ, ௦ܰ). 

A multi-source interrogation and multi-detector acquisition scheme is used to acquire multistatic transillumination 
data, from which the scattered light due to the targets is found, ߶௦௖௔ ൌ ߶ െ ߶଴, where ߶ is the light intensity measured 
on the boundary with targets embedded in the scattering medium and ߶଴ is the background image without targets 
embedded, which can be approximated by an “average” of all acquired images. Thus, the response matrix K is 
constructed with perturbations of spatial intensity distributions on the boundary.11 

A time reversal matrix T is then constructed as ܶ ൌ ܶ ற (orܭܭ ൌ  for continuous wave (CW)), which is similar ்ܭܭ
to the time reversal matrix used in the time reversal by Devaney8-11. Eigenvalues ߣ௝ and eigenvectors ݑ௝ of T are found, 
where ݆ ൌ ሺ݊݅݉ڮ,1,2 ௗܰ, ௦ܰሻ. The leading eigenvalues correspond to the targets. The vector subspace method, MUSIC 
is used to determine the locations of hidden objects. A Green’s function vector on the detector array ݃ௗ൫ࢄ௣൯ associated 
with a test target position ࢄ௣ at ݌௧௛ voxel is calculated using diffusion model, where ݃ௗ൫ࢄ௣൯ ൌ ሾܩௗ൫࢘ଵ, ,௣൯ࢄ ,ଶ࢘ௗ൫ܩ ڮ,௣൯ࢄ , ,ே೏࢘ௗ൫ܩ ,௝࢘ௗ൫ܩ ௣൯ሿ் and the Green’s functionsࢄ ݆ ,௣൯ࢄ ൌ ڮ,1,2 ௗܰ, describe 
light propagation from the test target position ࢖ࢄ to detectors at ࢘௝. Then the eigenvectors ݑ௝ corresponding to the 
leading eigenvalues are used to calculate the MUSIC type pseudo spectrum using the following formula8,9: ܲ൫ࢄ௣൯ ൌ ห௚೏൫ࢄ೛൯หమฬห௚೏൫ࢄ೛൯หమି∑ ห௨ೕ಩௚೏൫ࢄ೛൯หమഊೕರಣ ฬ,   (2) 

where ߳ is the threshold determined using an L-curve method to separate the signal and noise subspaces. When both 
absorption and scattering properties are considered12, one Green’s function vector associated with absorption property 
and constructed with Green’s functions ܩௗ and three Green’s function vectors associated with scattering property 
constructed with ߲ܩௗ ⁄ݔ߲ ௗܩ߲ , ⁄ݕ߲  and ߲ܩௗ ⁄ݖ߲ , respectively are used to calculate the pseudo spectrum at each voxel. 
Hence, four pseudo values are obtained at each voxel, one for absorption, and three for scattering. 

A maximum value of ܲ൫ࢄ௣൯ is obtained when ࢄ௣ is the position of one of the hidden objects. By sorting pseudo 
values ܲ൫ࢄ௣൯, the positions of the embedded objects are determined. At the same time, absorptive and scattering objects 
are distinguished according to the type of the Green’s function vector ݃ௗ൫ࢄ௣൯ associated with maximum pseudo value. 

In this MUSIC procedure, only a single run for calculating the pseudo spectrum over voxels is required, without 
iterative procedure used in the traditional inverse approach. 
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3. EXPERIMENTAL METHODS AND MATERIALS  
Two different samples were used to test the efficacy of the TROT approach in two different experiments. Both samples 
used a 250 mm × 250 mm × 60 mm transparent plastic container filled with Intralipid-20% suspension in water. The 
concentration of Intralipid-20% was adjusted to provide an absorption coefficient µa ~ 0.003 mm-1 at 790 nm, and a 
transport mean free path lt ~ 1 mm, which were similar to values of those parameters for human breast tissue. In the first 
sample, the depth (position along z-axis) of an absorptive target was varied to explore how the accuracy of position 
estimate depended on depth. In the second sample, the separation between two absorptive targets was varied to test how 
close those could be and yet be resolved as separate objects. The target(s) were glass sphere(s) of diameter 8-9 mm filled 
with ink dissolved in Intralipid suspension in water (µs was adjusted to be the same as that of the background medium, µa 
=0.013 mm-1 which was about 3 times higher than that of background medium). 

A multi-source interrogation and multi-detector acquisition scheme was used to acquire data. A 100-mW 790-nm 
diode laser beam was used to illuminate the samples and scan the source plane with a 5 mm step-size. A charge coupled 
device (CCD) camera was used on the other side of the sample to detect the transmitted light on the boundaries of the 
slab samples (detector plane). The first sample was scanned with the laser beam in an array of 9×9 grid points, and the 
second sample was scanned in an array of 11×15 grid points. The scanning and acquisition process was controlled by a 
computer (PC). A schematic diagram of the experimental setup is shown in Fig. 1. 

 
Fig. 1.  A schematic diagram of the experimental arrangement used for imaging objects embedded in a turbid medium. 

 

4. ANALYSIS AND RESULTS  
One whole dataset for each experiment is of order 108 source-detector pairs, considering each pixel in a CCD camera as a 
detector. From each image, a region of interest was cropped out and then every 5×5 pixels in the cropped image were 
binned to one pixel. Light intensity perturbation due to targets in each image was found by subtracting the background 
image from each individual image. The response matrix was constructed using the light intensity perturbations. The TR 
matrix was generated by multiplying the response matrix by its adjoint matrix (transpose for continuous-wave (CW) 
illumination). The eigenvalue equation was solved and signal subspace was selected and separated from the noise subspace. 
MUSIC was then used to calculate the pseudo spectrum for every voxel in the 3D space of the sample. For each voxel, one 
absorption and three scattering components were calculated. The voxel size was 0.77 mm × 0.77 mm × 1 mm. By sorting 
the pseudo spectrum, the object(s) were located.  

In the first experiment using only one target, the lateral (x, y) position of the target was kept the same at (25.5 mm, 24.7 
mm), while five different depths (position along z-axis) of 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm and 45 mm 
were used. A cross-sectional pseudo image was generated using the pseudo spectrum for all voxel positions in the sample. 
The spatial profiles in the x, y and z directions of the images through the targets (a typical image and profiles for the two-
target case are shown in Fig. 2) are used to assess target location. The retrieved target positions are compared with known 
positions in Table 1.  

 

 

 

 

PC z

x

CCDLaser 

y 

Sample 
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Table 1. Positions of one target located at different depths 

 

 

The TROT assessed positions were in good agreement with the known positions. The accuracy of the z-position was 
found to be optimal when the target was located in the middle plane of the sample, and deteriorated when the target was 
closer to the source plane or the image plane.  

In the second experiment using two targets the depth was kept fixed (z = 30 mm), while the separation between them 
separated with distances of ~ 11.8 mm, 16.8 mm, and 26.8 mm, in the x direction. A cross-sectional pseudo image of the 
targets when separated by a center-to-center distance of 11.8 mm (separation between nearest edges ~4 mm), generated 
using the pseudo spectrum are shown in the left pane of Fig. 2. Similar images for other target separations were also 
obtained. The profiles in the x, y and z directions through the right target are shown in the right pane of Fig. 2. These 
profiles were used to assess locations of the targets, and the separation between the two targets. In all cases, the targets were 
determined to be absorptive, because peaks occurred in the pseudo spectrum with the test Green’s function vector 
corresponding to absorption property. 

 
Fig. 2. TROT generated cross-section pseudo image when the targets are separated by 11.8 mm is shown in the left pane and pseudo-

value profiles through the target along x, y and z directions are shown in the right pane. 

 

The known and retrieved positions and separations Δx between of the two targets appear in Table 2. In all the cases, the 
two targets were resolved, even when their center-to-center separation was 11.8 mm apart, nearest sides separated by only 
~4 mm. For all retrieved positions, the maximum error in the lateral positions is 3.0 mm, and the maximum error in the axial 
positions is 1.5 mm. The errors in the lateral positions increase as the targets get closer. 

 

 

 

 

 

 

Known Positions 

[x, y, z (mm)] 

Retrieved Positions 

 [x, y, z (mm)] 

Error (mm) 

25.5, 24.7, 15 24.9, 24.4, 17.5 0.6, 0.3, 2.5 

25.5, 24.7, 20 25.7, 24.4, 21.5 0.2, 0.3, 1.5 

25.5, 24.7, 25 25.7, 24.4, 26.5 0.2, 0.3, 1.5 

25.5, 24.7, 30 25.7, 24.4, 30.5 0.2, 0.3, 0.5 

25.5, 24.7, 35 25.7, 25.2, 33.5 0.2, 0.5, 1.5 

25.5, 24.7, 40 24.9, 25.2, 36.5 0.6, 0.5, 3.5 

25.5, 24.7, 45 24.9, 25.2, 39.5 0.6, 0.5, 5.5 
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Table 2. Positions of two targets separated with different distances 

Known Separation 
[Δx (mm)] 

Obj. # Known Position 
[x, y, z (mm)] 

Retrieved Position 
[x, y, z (mm)] 

Error (mm) Retrieved Separation   
[Δx (mm)] 

11.8 
1 27.6, 26.0, 30 30.3, 24.4, 28.5 2.7, 1.6, 1.5 6.9 
2 40.2, 26.0, 30 37.2, 25.2, 29.5 3.0, 0.8, 0.5 

16.8 
1 25.1, 26.0, 30 26.4, 24.4, 28.5 1.3, 1.6, 1.5 14.6 
2 42.7, 26.0, 30 41.0, 25.2, 29.5 1.7, 0.8, 0.5 

26.8 
1 20.1, 26.0, 30 19.5, 25.2, 29.5 0.6, 0.8, 0.5 27.6 
2 47.7, 26.0, 30 47.1, 25.2, 30.5 0.6, 0.8, 0.5 

 

Similar experiments were also done when the target had a higher concentration of ink corresponding to a greater 
absorption coefficient. In that case, smaller errors occurred in the retrieved position which should be due to higher signal-to-
noise ratio. 

 

5. SUMMARY AND DISCUSSIONS 
The work presented above demonstrate that TROT is effective in obtaining three-dimensional location information of a 
single absorptive target at different axial locations, and two absorptive targets separated by different distances along a 
lateral direction. The known lateral positions of the targets were retrieved within ~2 mm for breast tissue simulating 
samples. The accuracy for assessing the axial position (depth) depended on the target location. High accuracy was 
obtained for target in the mid-plane, while the accuracy deteriorated as the target was moved towards the source plane or 
the detector plane.  Breast tumors commonly grow further from the breast surface, and the TROT approach is expected 
to be effective in locating those even at an early stage.  

The experiments presented in this article were carried out for samples in slab geometry. The approach can be 
adapted to cylindrical geometry as well. While the results presented here are for absorptive target(s), our preliminary 
work show that TROT will be effective for scattering targets as well, and we are in the process of developing it for 
scattering targets, as well as, for targets that are both scattering and absorptive in nature. Our experiments used 
continuous-wave light, but the approach would work with frequency domain and time-resolved data as well.  

One important difference between the sample used in our experiments and human breast is that in our sample the 
intervening medium can be treated as uniform, while human breast is not uniform. The pseudo spectrum is calculated 
using the known Green’s function of the background medium. When the medium is non-uniform, Green’s function for a 
uniform medium is used as an approximation.13  

The approach is fast as no iteration is involved. The code used to perform the computation is written in Matlab. With 
pre-processed data, a typical time to perform the 3D image reconstruction (5 cm × 5 cm × 6 cm) with a sub-millimeter 
resolution using a Pentium 2GHz CPU processor and 2GB memory, is approximately 10 minutes. The computation time 
can be further reduced by improving our algorithm, and using C/C++ code. 

In summary, the TROT approach based on the concept of time reversal and using MUSIC shows promise to locate 
objects in turbid media, such as a tumor in human breast with useful accuracy.  
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ABSTRACT   

Optical imaging using independent component analysis (OPTICA) and time reversal optical tomography (TROT) 
approaches are used to detect, locate, and obtain cross-section images of two tumor pieces inside a model human breast 
assembled using ex vivo human breast tissues and configured as a semi-cylindrical slab of uniform thickness. The 
experimental arrangement realized a multi-source probing scheme to illuminate an end face (source plane) of the slab 
sample using 750 nm, 800 nm and 830 nm beams of laser light. A multi-detector signal acquisition scheme measured 
transmitted light intensity distribution on the other end face (detection plane).  This combined multi-source probing and 
multi-detector sensing approach culminated in multiple spatial and angular views of the sample necessary for target 
localization. The perturbations in light intensity distribution in the detection plane were analyzed using both the OPTICA 
and the TROT approaches to obtain locations of the tumor pieces. A back-projection technique with OPTICA provided 
cross-section images and estimates of cross section of the targets within the sample. The estimated locations and 
dimensions of targets are in good agreement with the results of a corroborating magnetic resonance imaging experiment 
and known values.    

Keywords: Medical and biological imaging, Image reconstruction techniques, Light propagation in tissues, Inverse 
problems, Three-dimensional image processing, Tomography, Breast cancer, Magnetic resonance imaging, Independent 
component analysis. 
 

1. INTRODUCTION  
Optical detection of targets in a turbid medium makes use of the difference in optical properties, such as, scattering 
coefficient, absorption coefficient, index of refraction, and fluorescence between the targets of interest and the 
intervening medium [1]. Multiple scattering of light by the turbid medium produces a noise background that blurs the 
image, and in severe cases makes direct imaging impossible. Inverse image reconstruction approaches that are 
commonly used to retrieve image information have to deal with the fact that inverse problems are ill posed, and attain 
different measures of success [2]. 

We are developing the optical tomography using independent component analysis (OPTICA) [3-5], and time reversal 
optical tomography (TROT) [6-8] approaches for detecting and obtaining three-dimensional location information of 
target(s) in highly scattering turbid media in general, and of tumor(s) in human breast, in particular. In this paper we 
present the results of our study of a “realistic model cancerous breast” formed using ex vivo human breast tissues with 
two pieces of tumors embedded within. We use a multi-source, multi-wavelength probing and multi-detector signal 
acquisition scheme, and analyze the resulting data using both OPTICA and TROT approaches to obtain images and 
locations of the tumor pieces.  These results are compared with magnetic resonance imaging measurements as reference. 

2. EXPERIMENTAL METHODS AND MATERIALS  
The experimental arrangement for detecting and locating tumors in the realistic model breast using OPTICA and TROT 
is shown schematically in Fig. 1.  The model breast was assembled using two pieces of normal ex vivo female human 
breast tissues. Two pieces of cancerous tissues were sandwiched at different locations within the two normal pieces. The 
normal breast tissue specimens weighed 119 grams and 127 grams and consisted primarily of adipose tissue, while each 
tumor (infiltrating ductal carcinoma) piece weighed approximately 1 gram. The sample was placed inside a cylindrical 
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transparent plastic container of diameter 110 mm with a movable end, which was moved to slightly compress the tissue 
along the z-axis and hold it in place. The tumor piece located at the left side of the sample (‘left tumor’) was of the size 
of 8 mm × 5 mm × 3 mm and that located on the right side (‘right tumor’) was of the size 10 mm × 10 mm × 5 mm. The 
axial orientation of the plastic container and sample within it was preserved for magnetic resonance imaging (MRI) 
experiments following the optical measurements. 
 
The optical imaging experiments were carried out using a beam of light collimated to a 1-mm spot size. Light of three 
different wavelengths 750 nm, 800 nm, and 830 nm from a Ti:sapphire laser were used in the measurement. The average 
beam power was maintained at 10 mW for every wavelength. Multiple source illumination was realized in practice by 
scanning the sample in a 26 × 16 array of x-y grid points with a step size of 2.5 mm, while the CCD camera imaged the 
entire detection plane. Each illuminated pixel of the 1024 × 1024 pixels of the CCD camera could be regarded as a 
detector. For illumination of every scanned point on the source plane, the CCD camera recorded the diffusely transmitted 
intensity pattern on the detection plane. 
 
For MRI experiments, the breast model sample in the plastic container was taken to Memorial Sloan-Kettering Cancer 
Center (MSKCC) small animal MRI facility. The facility currently utilizes a 4.7-T 33-cm (Bruker BioSpin). MR images 
of the sample were recorded in 2.0-mm slice thick sagittal slices. 
 

 
 

 

 

 

 

 

Figure 1. Schematic diagram of the experimental arrangement (M = mirror, BC= beam collimator, CCD = charge-coupled 
device, PC = personal computer) 

 

3. THEORETICAL FORMALISM 
The perturbation of the detected light intensities on the boundaries of the medium, the scattered wave field, due to 
scattering inhomogeneities is given, in Diffusion Approximation (DA), by [3-5] 
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in the first-order Born approximation assuming that light diffuses inside the medium. In Eq.(1), rs and rd are the 
positions of the source and the detector on the boundary, respectively; δμa (r, λ) = μα (r, λ) − μa0 (λ) and δD(r, λ) = D(r, 
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    Left Tumor     Right Tumor   
Wavelength (nm) y (mm) x (mm) z (mm) y (mm) x (mm) z (mm) 

750 50.3 54.9 20 26.1 48.7 20.2 
800 50.5 55.4 17.9 27.1 49.4 19.5 
830 49.6 54.2 17.2 27.1 47.2 21.5 

Average 50.1 54.8 18.4 26.8 48.4 20.4

λ) − D0(λ) are the differences in absorption coefficient and diffusion coefficient, respectively, between the target at r and 
the background; c is the speed of light in the medium; and G(r, r’; λ) is the Green’s function describing light 
propagation from r’ to r inside the background turbid medium of absorption and diffusion coefficients μa0 (λ) and 
D0(λ)  where λ  is the wavelength of the probing beam. OPTICA Formalism has been detailed elsewhere [3-5]. For 
TROT algorithm, the experimental data obtained using the multiple-source and multiple-detector arrangement, were as a 
response matrix K, expressed as[6-7] 
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where j = 1, 2, …, N and l = 1, 2, …., N are indices of sources and detectors, respectively; m = 1, 2, …., M is the index 
of the targets with M < N; Rj, Rl and Xm are the positions of a source, a detector and a target respectively; τm is the 
difference in the optical parameters (absorption and scattering) of the target from that of the background medium (the 
background medium may be uniform or non-uniform); Gs(Xm, Rj) and Gd(Rl, Xm) are the Green’s functions in the 

background medium. The vector )],(,),2,(),1,([ Nm
dGm

dGm
dGd

mg RXRXRX ⋅⋅⋅=  in Eq. (2) has N components 
[6-7].  From K a time reversal matrix T = KTK is constructed, and its eigenvalues and eigenvectors are determined. 
Leading eigenvalues lead to the targets.    
 

4. RESULTS 
4.1 OPTICA 

OPTICA-generated independent intensity distributions on the detector plane for the two tumors using 750-nm 
probing are shown in Figure 2(a). Similar intensity distributions were obtained for probing using light of other two 
wavelengths as well. The x-y-z locations of the left tumor and the right tumor determined from fitting these ICA 
profiles to the Green’s function for all three wavelengths are shown in Table I. The average of the probed tumor 
positions from all wavelengths is shown in bold. The cross-section images of the two tumors constructed using 
Back-projection Fourier transform [5] are shown in Figure 2(b).  

Table I. The coordinates (x, y, z) of the left tumor and right tumor 

 

 

 

 

 

 

4.2 TROT 

The TROT algorithm-generated cross-section image of the tumors for λ = 750 nm is shown in Figure 3(a). Similar 
images were obtained using other two wavelengths. The locations were found to be (11.5mm, 33.1mm, 22.5 mm) for the 
left tumor and (42.6 mm, 38.6 mm, 20.5 mm) for the right tumor. Since the tumors depth location is at the mid plane ~ 
20-mm, we compare the horizontal separation between the two tumors and find it to be 35.8-mm using OPTICA and 
31.1-mm using TROT. The optical results are in good agreement with the MR images at depth 22.5 mm shown 3(b) and 
3(c) and separation of 35 mm. 
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Figure 2. (a) OPTICA generated intensity distributions pertaining to the left tumor (LT) and right tumor (RT) for 750-nm 
probing. (b) Cross-section images formed by Back-projection Fourier transform.  

 

 
   (a)                                                             (b)             (c) 

Figure 3. (a) TROT generated cross-section image. (b) Left tumor LT at slice depth z = 18.5-mm, and (c) Right tumor RT at 
slice depth z = 22.5-mm 

LT RT 
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5. SUMMARY 
The two approaches provided comparable information, and successfully detected and located the two tumors. The use of 
multi-wavelength method eliminated some artifacts. The implementation time was under 1 minute. Although we have 
used the DA in this case, the approach can use other light propagation models. It can be used with continuous wave, 
frequency-domain and time-resolved experimental data. Future work on this approach will be directed towards 
estimating the optical properties, as well as, size and shape of targets. 
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Abstract 

Diffuse optical imaging (DOI) for detecting and locating targets in a highly scattering turbid 
medium is treated as a Blind Source Separation (BSS) problem. Three matrix decomposition 
methods, Independent Component Analysis (ICA), Principal Component Analysis (PCA) and 
Non-negative Matrix Factorization (NMF) were used to study the DOI problem. The efficacy of 
resulting approaches was evaluated and compared using simulated and experimental data. 
Samples used in the experiments included Intralipid-10% or Intralipid-20% suspension in water 
as the medium with absorptive or scattering targets embedded. 

 

1. Introduction 
Diffuse optical imaging (DOI) for detection and retrieval of location information of targets in a 
highly scattering turbid medium may be treated as a blind source separation (BSS) problem [1, 2]. 
Various matrix decomposition methods, such as, Independent Component Analysis (ICA) [3], 
Principal Component Analysis (PCA) [4] and Non-negative Matrix Factorization (NMF) [5, 6] 
have been developed for solving the BSS problem and retrieving desired information. 

Min Xu et al. adapted ICA of information theory to develop Optical Tomography using 
Independent Component Analysis (OPTICA) and demonstrated its application for diffuse 
imaging of absorptive, scattering and fluorescent targets [7-11]. ICA assumes the signals from 
different targets to be independent of each other, and optimizes a relevant measure of 
independence to obtain the ICs associated with different targets. The position co-ordinates of 
targets in three dimensions are determined from the individual components separately. 

PCA assumes that the PCs contributing to the signal are uncorrelated and explain the most 
variance in the signal. PCA has been widely used in various applications, such as spectroscopy 
[12], face recognition [13] and neuroimaging [14]. NMF seeks to factorize a matrix into two 
non-negative matrices (component signals and weights) and requires the contributions to signal 
and the weights of the components to be non-negative. It does not imply any relationship 
between the components. NMF has also been widely used in biological analysis [15], and 
spectral analysis [16]. 

The objective of this study is to test and compare the efficacy of these algorithms when used 
to solve the DOI problem. Results are presented and compared using simulative data and 
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experimental data using absorptive and scattering targets embedded in model scattering media. 
Our interest in solving the DOI problem derives from the need for a non-invasive modality for 
detecting, locating, and diagnosing breast tumors in early stages of growth.  

The remainder of the article is organized as follows. In Section 2, the formalisms of the three 
methods are introduced. Section 3 evaluates the resulting imaging approaches using simulated 
data. The approaches are further examined in Section 4 for experimental data acquired using 
absorptive and scattering targets embedded in model scattering media. Section 5 summarizes and 
discusses the results. 

 

2. Formalism 
2.1 Blind Source Separation problem 

Blind source separation (BSS), also known as blind signal separation is a general problem in 
information theory that seeks to separate different individual signals from the measured signals, 
which are weighted mixtures of those individual signals. Assuming M individual signals, 
             , are linearly mixed instantaneously, the BSS problem is modeled as following. 
The dimension of       is Ns, the number of sampling times. In this presented study, t will be 
replaced by spatial positions of the excitation light sources. A total of Nd detectors sense Nd 
different mixtures of      . The mixture measured by the ith detector can be presented as       

         
 
   , or     , in a matrix notation, where         is a mixing or weighting 

matrix,        ,         , and              . The objective of BSS is to retrieve the 
signals       and their weights,    . ICA, PCA and NMF are statistical analysis methods, used to 
solve the BSS problem. 

2.2 Diffuse optical imaging problem 

In DOI one measures the signal at the sample boundary, which includes a weighted mixture of 
contributions from embedded targets. One uses the diffusion approximation [17-19] of the 
radiative transfer equation [20, 21] as the forward model to describe light propagation in a highly 
scattering turbid medium. The perturbation in the light intensity distribution measured on the 
boundary of the sample due to the presence of the targets (which are localized inhomogeneities 
in the optical properties within the sample volume) may be written, in the first order Born 
approximation, as [22, 23] 

                                   
   

                                         
  ,     (1) 

where   ,   , and   are the positions of a source of unit power, detector and target, respectively; 
        and         are the Green’s functions that describe light propagation from the source 
to the target and from the target to the detector, respectively; δµa and δD are the differences in 
absorption coefficient and diffusion coefficient between the targets and the background medium, 
respectively; and c is the light speed in the medium. 

A multi-source illumination and multi-detector signal acquisition scheme is used to acquire 
light transmitted through a scattering medium. For small absorptive targets, a perturbation data 
matrix is constructed using     for all sources. The elements of the data matrix pertaining to 
absorptive targets represented by the first term in Eq. (1) may be written in a discrete form as: 
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   , (         ;           ),  (2)  

where   ,    and    are the locations of the ith detector, jth source and mth target, respectively; Ns, 
Nd and M are the numbers of sources, detectors and targets, respectively;                 is 
the optical absorption strength of the mth target,     is the volume of the target;           and 
          are the Green’s functions that describe light propagation from jth source to mth target 
and from mth target to ith detector, respectively. The number of targets is assumed to be less than 
that of sources and detectors,              . 

The mth target may be considered to be a virtual source of strength             excited by 
the real light source located at   . The data matrix X = {Xij}, may be considered to be a set of 
combinations of light signals from all virtual sources mixed by a mixing matrix            . 
Therefore, this problem can be treated as a BSS problem.  

As the second term in Eq. (1) suggests, each scattering target is represented by three co-
located virtual sources of strength:              , where    

 

  
          , and    

          , is the optical scattering strength of the mth target [8]. The mixing matrices become 
                (       ), for the three virtual sources generated by the mth target. The 
elements of the data matrix for scattering targets may be written as 

                                         
 
   .    (3) 

Since one absorptive target is represented by one centrosymmetric virtual source, while three 
virtual sources (one centrosymmetric and two dumb-bell shaped) represent one scattering target 
[7, 8], the number and patterns of virtual sources may be used, in favorable situations, to identify 
the target as absorptive or scattering in nature. In this paper, only small targets are considered 
since all three algorithms are suited for small targets, and early detection, when the tumors are 
more amenable to treatment, is of practical interest. 

2.3 DOI as a BSS problem 

The data matrix for the DOI problem may be written as  

              
 
   ,        (4) 

where        ,        , and         . For absorptive targets,  

                 and                ,      (5a) 

while for scattering targets,  

          
         and                  .     (5b) 

                    and        (         ) are two-dimensional intensity distributions 
on the source and detector planes, respectively. Source and detector planes are the boundaries of 
the sample through which light enters and exits the sample volume, respectively. The scaling 
factors    and    are related to the target optical strength,        . The location of the 
target and the scaling factors can be retrieved using a least squares fitting via 

               
     

                
 

  

                 
                   , or    (6a) 
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                      ,   (6b) 

for absorptive and scattering targets, respectively. However, when a scattering target is embedded 
deep in a turbid medium, only the      

         virtual source remains significant. So only 
    may be used for fitting in Eq. (6b) [8].  

2.3.1 ICA 
OPTICA assume that the virtual sources are independent of each other [8]. So they can be 
retrieved through an iterative process which seeks to maximize the independence among the 
components. In practice, the independent components are found by maximizing some measure of 
non-Gaussianity, such as kurtosis (the fourth-order cumulant), of the unmixed components. A 
Matlab program for ICA was adopted from http://sccn.ucsd.edu/eeglab/. The location of the 
target can be retrieved by fitting the independent component intensity distributions (ICIDs) to 
Green’s functions or derivatives of Green’s functions using Eqs. 6(a) and 6(b).  

2.3.2 PCA 
PCA assumes that the virtual sources are uncorrelated so that the correlation (covariance) 
between them is ideally zero, and minimal in practice. The covariance matrix of S,        
should be diagonal. The general process of PCA is as follows. The data matrix       , 
where N is random noise added to the data, A and S the same as defined in Eq. (4). When S is 
mean centered, elements of the mean-centered matrix    are defined as 

   
       

 

  
    

  
   .        (7a) 

Similarly  

    
       

 

  
    

  
   .        (7e) 

PCA looks for a matrix P that decomposes X into virtual sources,     . It also holds that 
      , since P is just a rotation matrix which does not change the center of the data. 

                                     ,     (8) 

where                . The eigenvalues    are variances in the covariance matrix. 
Therefore,            , where    is orthonormal. PCA is realized by eigenvalue 
decomposition (EVD) of the covariance matrix of X. The eigenvectors with leading eigenvalues 
(largest variances) are selected to be the PCs using the L-curve  [24]. 

Since,         , A is determined as a matrix including only PCs. S is calculated as 
            . Rows of S and columns of A represent principal component intensity 
distributions (PCIDs) on the source plane and detector plane, respectively, and are proportional 
to the images of the virtual sources projected on the source and detector planes. The target 
positions are determined using Eq. (6). 

2.3.3 NMF 
NMF is a group of multivariate analysis algorithms that factorize a matrix X into A and S: X = AS, 
A and S are non-negative [6]. Unlike ICA and PCA, NMF does not imply any relationship 
between the retrieved components; instead, it just enforces non-negativity constraints on A and S. 
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There are various algorithms developed to solve NMF, such as the multiplicative update method 
[5] and alternating least squares method [25, 26]. 

  In the multiplicative update implementation of NMF, A and S can be found by minimizing 
the square of Euclidean distance         as the cost function, where     and    , using 
the multiplicative update rule 

         
       

        
,         (9a)  

        
       

        
.         (9b) 

The alternating least squares implementation of NMF uses alternate least squares steps to 
estimate A (or S), and use that estimate to optimize S (or A), and keep repeating the alternative 
steps until the desired optimization is obtained. Non-negativity is ensured by setting any negative 
element of A or S equal to 0.   

A NMF toolbox was obtained from http://cogsys.imm.dtu.dk/toolbox/ to perform NMF 
computation. A built-in command nnmf is also available in Matlab (R2011a). 

NMF algorithm requires that the non-negativity assumption must hold in the problem. In 
particular, for absorptive targets, when X is constructed with    ,    should be positive, i.e. the 
targets should be more absorbing than the background. If the targets have weaker attenuation 
properties than the background, X needs to be constructed with     instead. For scattering 
targets, X should be treated similarly to keep its elements positive. 

When NMF is applied to a scattering target, only the centrosymmetric component shows up 
properly, since the other two components have dumb-bell shape which includes negative values 
[8]. So without any prior knowledge or some other experimental means to assess if the target is 
absorptive or scattering, NMF may not distinguish between the two possibilities.  

The decomposition methods can be applied with different sample geometries such as slab and 
cydrindrical geometries, and different measurement domains such as time-resolved domain, 
frequency domain and continuous wave (CW). In this article, Green’s functions for slab 
geometry [23] with CW measurement were used for simulation and experiments. 

 

3. Simulation 
The sample was considered to be a 40-mm thick uniform scattering slab with lateral dimension 
of 80 mm × 80 mm, as shown in Fig. 1. Its absorption and diffusion coefficients were taken to be 
   = 0.003 mm-1 and   =  

 
 mm (transport mean free path, lt = 1 mm), respectively, which are 

similar to the average value of those parameters for human breast tissue. An absorptive and a 
scattering point target were placed at (50, 60, 15) mm and (30, 30, 25) mm, respectively. The 
index of refraction n of the medium was taken to be 1.33. The speed of light is 2.998 × 108 m/s, 
or 299.8 mm/ns in vacuum, and 225.4 mm/ns in the medium. The absorption coefficient of the 
absorptive target was set to be higher than the background with     = 0.001 mm-1, while the 
diffusion coefficient was taken to be the same as that of background. The diffusion coefficient of 
the scattering target was set to be lower than the background (higher scattering coefficient) with 
   = -0.1 mm (lt = 0.7 mm), while the absorption coefficient was taken to be the same as the 



6 
 

background. The volumes of both targets are set to be 8 mm3. The optical strengths of the 
absorptive and scattering targets were        = 1.803 mm3/ns, and       = -180.3 mm5/ns, 
respectively. The incident CW beam step scanned the sample at 21 × 21 grid points covering an 
80 × 80 mm2 area, with a step size of 4 mm. Light on the opposite side was recorded at 41 × 41 
grid points covering the same area. Multiplicative Gaussian noise of 5% was added to the 
simulated data. The data matrix X was then obtained using Eq. (2) directly, and analyzed using 
the three different algorithms. 

 

 

 

 

 

 
 

Fig. 1: Light intensity distribution on the detector plane is recorded when a point source scans on the source plane. 

 

3.1 ICA Analysis 

One independent component for the absorptive target and three independent components for the 
scattering target were retrieved by ICA. The independent component intensity distributions 
(ICIDs) on the detector plane are shown in Figs. 2(a), 2(c), 2(d), and 2(e). Similar ICIDs were 
obtained on the source plane. Fig. 2(g) shows the centrosymmetric ICID for the scattering target, 
and Fig. 2(i) shows the ICID for the absorbing target.  

The components in either the detector plane or the source plane can, in principle, be used to 
extract position and optical strength of the target(s). However, in our experimental arrangement 
signal is collected by a 1024 × 1024 pixels CCD camera, while the source plane is scanned in an 
x-y array of points, which is much smaller than the number of pixels in the CCD camera. 
Consequently, the resolution in the detector plane is much better, and the data set more robust 
than the source side. So, we used the images on the detector plane for retrieving target 
information using experimental data. While it would not matter in simulation, to be consistent 
with experimental situations, we employed detector plane images when using simulated data as 
well for all three algorithms. Table I lists the locations and strengths of the absorptive and 
scattering targets retrieved by fitting the spatial intensity profile of the centrosymmetric 
components on the detector plane to Green’s functions and derivatives of Green’s functions 
using Eq. 6(a) and Eq. 6(b), respectively, as shown in Fig. 2(b) and Fig. 2(f). Fig. 2(h) and Fig. 
2(j) show the corresponding fits to the profiles on the source plane. 

x 

y 

Detector Plane 

z 

y 

x 

Source Plane 
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Fig. 2: ICA extracted two-dimensional intensity distribution on the detector plane of: (a) the centrosymmetric 
component, (c), (d) dumb-bell shaped components of the scattering target; and (e) the absorptive target. Similar 
intensity distribution on the source plane of: (g) the centrosymmetric component of the scattering target, and (i) the 
absorptive target for comparison. Fits to the spatial intensity profile on the detector plane along the white dashed line 
(shown in figures) of the centrosymmetric component of the scattering target is shown in (b), and that of the 
absorptive target is shown in (f). Corresponding fits to spatial profiles on the source plane are displayed in (h) and 
(j), respectively. 

 

3.2 PCA Analysis 

Eigenvalue equation of the covariance matrix of X was solved. The eigenvalues found by PCA 
were sorted in descending order. Fig. 3 shows a plot of leading 20 eigenvalues on a logarithmic 
scale. 

(a) (b)

(c)

(i)

(e)

(d)

(f)

(g)
(h)

(j)

Source Plane Images and Profiles

Detector Plane Images and Profiles
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Fig. 3: A logarithmic plot of the first 20 PCA eigenvalues 

First four leading eigenvalues were selected for PCs. The corresponding PCIDs were 
calculated. The PCIDs on the detector plane are shown in Fig. 4. Similar images for PCIDs on 
the source plane were obtained. The scattering target has one centrosymmetric (Fig. 4(a)) 
component and two dumb-bell shaped (Fig. 4(c) and Fig. 4(d)) components, while the absorptive 
target has only one component (Fig. 4(e)). 

 
Fig. 4: PCA-extracted two dimensional intensity distribution on the detector plane of: (a) the centrosymmetric 
component, and (c), (d) dumb-bell shaped components of the scattering target; (e) the absorptive target. Green’s 
function fits to the spatial intensity profiles along the dashed line (shown in figures) of the (b) centrosymmetric 
component of the scattering target and (f) absorptive target, respectively, to retrieve the locations of the two targets. 

Fig. 4(b) and Fig. 4(f) show fits to the spatial intensity profile of the centrosymmetric 
component of the scattering target and that of the absorptive target, respectively, to retrieve the 
locations of the two targets. The locations and optical strengths of the targets retrieved by PCA 
are also shown in Table I. 

3.3 NMF Analysis 

The mixing matrix and virtual sources were retrieved from the data matrix X using NMF as 
explained in Section 2.3.3. As in the other two approaches, only one component is extracted for 

(a)

(c) (d)

(f)(e)

(b)
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the absorptive target.  Since NMF has a non-negativity constraint, only the centrosymmetric 
component for the scattering target is obtained. Non-negative component intensity distributions 
(NCIDs) on detector planes are shown in Fig. 5. Similar images for NCIDs on source plane were 
also obtained using the virtual sources in S. The results are also shown in Table I. 

 
Fig. 5: NMF-extracted two dimensional intensity distribution on the detector plane of: (a) the centrosymmetric 
component of the scattering target; (c) the absorptive target. Fits to the corresponding spatial intensity profiles along 
the dashed line (shown in figures) are shown in (b) and (d), respectively. 

 

3.4 Results and discussion 

The positions and optical strengths of the targets retrieved by ICA, PCA and NMF algorithms are 
shown in Table I, and compared to the known values. The retrieved results using all three 
algorithms from this simulated data are in excellent agreement with the known values.  

 
Table I. Positions and optical strengths retrieved using simulated data and ICA, PCA and NMF 

algorithms 

Target Known  
position  
(mm) 

Algorithm Fitted  
position 
(mm) 

Error  
(mm) 

Known* 
strength 

Fitted* 
strength 

Error  
(%) 

Sca. (30, 30, 25) ICA (29.9, 30.0, 25.1) (0.1, 0, 0.1) -180.3 -179.9 0.22 
PCA (30.0, 30.0, 25.0) (0, 0, 0) -180.3 -180.1 0.11 
NMF (30.0, 30.0, 25.0) (0, 0, 0) -180.3 -178.5 1 

Abs. (50, 60, 15) ICA (50.1, 60.2, 15.0) (0.1, 0.2, 0) 1.803 1.826 1.28 
PCA (50.1, 60.1, 14.9) (0.1, 0.1, 0.1) 1.803 1.812 0.5 
NMF (50.1, 60.1, 15.0) (0.1, 0.1, 0) 1.803 1.803 0 

* The unit for absorption strength of the target is mm3/ns and for scattering strength is mm5/ns. 

 

 

(a)

(c)

(b)

(d)
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4. Experiments 
4.1 Experimental materials and methods 

In this Section, the algorithms are evaluated using experimental data for absorptive and scattering 
targets embedded in model scattering media whose absorption and scattering properties are 
adjusted to mimic the average values of those parameters for human breast tissues. Two different 
experiments were carried out with two different samples. The first sample used a 250 mm × 250 
mm × 50 mm transparent plastic container filled with Intralipid-10% suspension in water as the 
background medium. The concentration of Intralipid-10% was adjusted to provide [27, 28] an 
absorption coefficient of µa ~ 0.003 mm-1, and a transport mean free path lt ~ 1.43 mm at 785 nm. 
The second sample used a similar container with dimension of 250 mm × 250 mm × 60 mm filled 
with Intralipid-20% suspension in water. The concentration of Intralipid-20% was adjusted to 
provide [27, 28] µa ~ 0.003 mm-1, and lt ~ 1 mm at 785 nm. These optical parameters of the 
medium were selected to be similar to the average values of those parameters for human breast 
tissue. The thickness of the samples was also comparable to that of a typical compressed female 
human breast. 

In the first experiment, two absorptive targets were embedded in the medium. The targets were 
~ 10-mm diameter glass spheres filled Indocyanine green (ICG) dye dissolved in Intralipid-20% 
suspension in water to obtain an absorption coefficient µa = 1.15 mm-1 at 785 nm, and to match the 
background scattering coefficient of 2.11 mm-1. The targets were placed at (57.2, 18.1, 20.0) mm 
and (19.9, 48.1, 25.0) mm, respectively.  

In the second experiment, two scattering targets were embedded, which were also ~ 10 mm 
diameter glass spheres, filled with Intralipid-20% suspension in water. The transport mean free 
path, lt was adjusted to be 0.25 mm, with scattering coefficient µs ≈ 11 mm-1, and absorption 
coefficient µa same as the background medium. The targets were placed in the middle plane (z = 
30 mm) in the container with a lateral distance of 40 mm from each other (center to center). 

The experimental setup is schematically shown in Fig. 6. A 10-mW 785-nm diode laser beam 
was used to illuminate the first sample, while a 100-mW 790-nm diode laser beam was used for the 
second sample. The input surface (source plane) of the samples was scanned across the laser beam 
in an x-y array of grid points to realize the multi-source interrogation of the samples. The 
transmitted light from the exit surface (detector plane) was recorded by a 1024 pixel ×1024 pixel 
(pixel size = 24 µm ) CCD camera (Photometrics CH350) equipped with a 60-mm focal-length 
camera lens. Each pixel of the CCD camera can be considered to be a detector implementing the 
multi-detector signal acquisition arrangement. A set of 16-bit 1024 pixel ×1024 pixel images were 
acquired. The two samples were scanned in an array of 11×12 and 11×15 grid points, respectively, 
with a step size of 5 mm in both cases. The processes of scanning and data acquisition were 
controlled by a personal computer. At all scan positions, raw transillumination images of the 
samples were recorded by the computer for further analysis. 
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Fig. 6: A schematic diagram of the experimental arrangement used for imaging objects embedded in a turbid 
medium. The inset at the bottom shows the 2D array in the input plane that was scanned across the incident laser 
beam; and the inset to the right shows a typical raw image recorded by the CCD. (CCD = charge coupled device, PC 
= personal computer) 

 

4.2 Analysis and Results 

A region of interest (ROI) was cropped out from each image. Then every 5×5 pixels in each 
cropped image were binned to one pixel to enhance signal-to-noise ratio. A background image was 
generated by calculating an average image for all scan positions to approximate the 
transillumination image without target(s) embedded. 

This averaging method for generating background image is suitable for small targets used in 
our experiments, as the ratio of the volume of the sample to that of the target was quite high 
(~500:1). For in vivo imaging of tumors in early stages of growth, the breast-to-tumor volume 
ratio will be similarly high and the averaging method will be applicable. Alternative approaches 
for generating a background image include using image of (a) a phantom that has the same 
average optical properties as the sample [29]; (b) the healthy contralateral breast for breast 
imaging [30]; and (c) the sample obtained using light of wavelength for which the target(s) and 
the background have identical optical properties [31]. Still another approach is to compute the 
background using an appropriate forward model [32]. A more detailed discussion of this 
important issue appears in one of our earlier publications [33]. 

The background image was also cropped and binned corresponding to the ROI for each scan 
position. Perturbation in the light intensity distribution, ∆ϕ due to targets in each image was found 
by subtracting the background image from the image. The data matrix X was then constructed 
using the light intensity perturbations at all scan positions. ICA, PCA, and NMF decomposition 
algorithms were performed on the data matrix separately. Results are shown and discussed below. 

4.2.1 Absorptive targets 
The images on the detector plane obtained using the ICA, PCA, and NMF algorithms are shown 
in Fig. 7, Fig. 8, and Fig. 9, respectively. Similar images on the source plane were also obtained 
using all three algorithms. The right side of each figure shows the corresponding spatial intensity 
profile. Locations of the targets are extracted from fits to these spatial intensity profiles, as 
described in Section 2.3 using Eq. (6). The results are presented in Table II. In Fig. 7, images on 

x

y

Sample

Source 
Plane

PC

CCDLaser

Detector 
Plane

z
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the source plane are shown in (e) and (g), and Green’s function fits to their spatial profiles are 
shown in (f) and (h) for comparison. 

 
Fig. 7: ICA-generated ICIDs on the detector plane are shown in (a) and (c); corresponding Green’s function fits to 
the horizontal spatial profiles through the dashed lines are shown in (b) and (d). ICIDs on the source plane are 
shown in (e) and (g); corresponding Green’s function fits to the horizontal spatial profiles through the dashed line 
are shown in (f) and (h). 

 

(a)

(c) (d)

(b)

(g)
(h)

(e) (f)

Source Plane Images and Profiles

Detector Plane Images and Profiles



13 
 

 
Fig. 8: PCIDs on the detector plane are shown in (a) and (c); and corresponding Green’s function fits to the 
horizontal spatial profiles through the dashed line are shown in (b) and (d). 

 

 
Fig. 9: NCIDs on the detector plane are shown in (a) and (c); corresponding Green’s function fits to the horizontal 
spatial profiles through the dashed line are shown in (b) and (d). 

 

It follows from the comparison of in Table II that the positions retrieved by all three 
algorithms are in good agreement with the known positions. The errors in the retrieved locations 
(x, y, z) of the two targets were within 1.7 mm. The PCIDs were not totally separated. Some 
“residue” was observed in one PCID from the other. ICA and NMF separated two components 
from this dataset more clearly. 

 

(a) (b)

(d)(c)

(a) (b)

(c) (d)
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Table II. Known positions vs. retrieved positions of the absorptive targets using ICA, PCA and NMF 
algorithms 

Target Known position 
(mm) 

Algorithm Fitted position (mm) Error (mm) 

 
1 

(57.2, 18.1, 20) ICA (57.4, 18.2, 21.5) (0.2, 0.1, 1.5) 
PCA (57.4, 18.2, 20.6) (0.2, 0.1, 0.6) 
NMF (57.4, 18.2, 19.5) (0.2, 0.1, 0.5) 

 
2 

(19.9, 48.1, 25) ICA (18.2, 46.7, 24.7) (1.7, 1.4, 0.3) 
PCA (18.2, 47.6, 25.9) (1.7, 0.5, 0.9) 
NMF (18.2, 47.6, 23.3) (1.7, 0.5, 1.7) 

 

4.2.2 Scattering targets 
The “images” corresponding to the centrosymmetric components of the virtual sources (targets) 
on the detector plane obtained using the ICA, PCA, and NMF algorithms are shown in Fig. 10, 
Fig. 11, and Fig. 12, respectively. Similar images on the source plane were also obtained. The 
right side of each figure shows the corresponding spatial intensity profile. Locations of the 
targets are extracted from fits to these spatial intensity profiles, as described in Section 2.3 using 
Eq. (6). The results are presented in Table III. 

 
Fig. 10: ICA-generated ICIDs on the detector plane are shown in (a) and (c); corresponding Green’s function fits to 
the horizontal spatial profiles through the dashed line are shown in (b) and (d).  

(a) (b)

(d)(c)
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Fig. 11: PCIDs on the detector plane are shown in (a) and (c); corresponding Green’s function fits to the horizontal 
spatial profiles through the dashed line are shown in (b) and (d). 

 
Fig. 12: NCIDs on the detector plane are shown in (a) and (c); corresponding Green’s function fits to the horizontal 
spatial profiles through the dashed line are shown in (b) and (d). 

Both targets were detected by all three algorithms. The target locations retrieved by three 
algorithms are shown in Table III, and compared with known locations. Overall, all three 
algorithms detect and locate the scattering and the absorptive targets with good accuracy, the 
maximum deviation of any one coordinate from the known value being ~3 mm. Since the 
maximum difference between the known and retrieved position coordinates was larger for the 
scattering targets, we calculated the squared correlation coefficient   to assess the fitting quality. 
NMF retrieves the position coordinates better (within 0.5 mm) for the scattering target #2 than 
done by ICA and PCA (deviation from known values being between 2-3 mm). NMF retrieved 
the position coordinates for target #1 with 3.0 mm error in z direction, which is not as good as 
that done by ICA and PCA. But   is 0.783 and 0.778 in the fittings for ICA and PCA, 
respectively, as compared to 0.993 for NMF, indicating that the quality of the fitting is better for 
NMF. The quality of fitting is presumably affected by the efficacy of decomposition. The 
decomposed NCIDs by NMF were more “clean” than those decomposed by ICA and PCA. We 
ascribe the observed higher errors in ICA and PCA estimates of the position coordinates of the 

(a) (b)

(d)(c)

(a) (b)

(d)(c)
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scattering target #2 than the NMF estimates to the interference from the other virtual source 
(corresponding to target #1) in ICA (Fig. 10(c)) and PCA (Fig. 11(c)) images.  It is commonly 
believed that errors in locating a scattering target are higher than that for locating an absorptive 
target, and the results of this study conform to that notion.  

 
Table III: Known positions vs. retrieved positions of the scattering targets using ICA, PCA and NMF 

algorithms 

Target 
# 

Known position 
(mm) 

Algorithm Fitted position  
(mm) 

Error (mm) 

 
1 

(13.0, 28.0, 30.0) ICA (12.6, 28.7, 29.1) (0.4, 0.7, 0.9) 
PCA (12.6, 28.7, 28.6) (0.4, 0.7, 1.4) 
NMF (12.0, 28.5, 33.0) (1.0, 0.5, 3.0) 

 
2 

(53.3, 28.5, 30.0) ICA (51.0, 31.8, 26.8) (2.3, 3.3, 3.2) 
PCA (50.9, 31.8, 26.7) (2.4, 3.3, 3.3) 
NMF (53.3, 28.0, 30.3) (0.0, 0.5, 0.3) 

 

5. Summary and Discussion 
Diffusive optical imaging was modeled as a BSS problem. ICA, PCA and NMF were used to 
decompose the data matrix, and locate the targets embedded in a highly scattering turbid 
medium. Only the components corresponding to the targets were extracted from a large dataset 
for target detection and localization.  

It may be instructive to compare the objectives, scope and computational complexity of these 
decomposition methods with model-based reconstruction methods. Decomposition methods 
obtain the 3-D locations of targets (the number of targets are generally small). Based on the 
retrieved locations, the methods may then be further extended to retrieve size and optical 
property information of the targets [9]. The common practice of model-based inverse 
reconstruction methods is to discretize the sample volume into N × N × N voxels, and estimate 
absorption and/or scattering coefficient in each voxel iteratively. Voxels with significantly 
different optical properties than the surrounding are regions of interest, and may be identified as 
targets. While estimating the optical properties, the forward model is solved repeatedly to 
calculate the intensity of the multiply-scattered light on the sample boundary. The difference 
between the intensity of the multiply scattered light predicted by the forward model and the 
experimental measurements is minimized by seeking an optimal set of the optical properties of 
every voxel in the sample volume. The number of variables thus is on the order N3. To determine 
location(s) of target(s) in three dimensions, the decomposition methods process the data matrix 
to retrieve the main components (A and S). Here A and S are two-dimensional matrices with the 
number of unknowns on the order of N2. The number of unknowns is, hence, reduced N times in 
the decomposition methods compared to the model-based approaches, which leads to a 
substantial saving in the computational time when N is large. No repeated solution of the forward 
model is involved in decomposition methods. Consequently, decomposition methods are 
considerably faster. 
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A comparison of the computational complexity of these two types of approaches may shed 
further light on their relative computation economy. For a model-based iterative reconstruction 
method, an equation of the form b = Wx is solved to find the targets, where W is a weight matrix 
of size NdNs × Nv, Nd, Ns, and Nv are the numbers of detectors, sources and voxels, respectively, b 
is an NdNs × 1 vector describing the perturbation in the detected light intensity due to the 
presence of targets, and x is the perturbation in the optical properties from the background values 
with dimension of Nv × 1. The computational complexity is typically O(NdNsNv

2) for a single 
iteration. For the decomposition approach, b is written as a 2-D matrix X with dimension Nd × Ns. 
To decompose matrix X, the computational complexity per iteration is typically of order O(NdNk) 
for ICA [34], and O(NdNsNk) for NMF [35], where Nk is the number of components that relates to 
the number of targets and is usually a small number. For PCA using SVD, the complexity is 
O(Ns

2Nk) [34]. The computational complexity of the intrinsic iterative process involved in the 
matrix decomposition algorithms is much lower than that in the model-based inverse 
reconstruction methods. 

All three matrix decomposition methods presented in this manuscript can potentially be used 
in in-vivo real-time breast cancer imaging. The three algorithms have different assumptions, 
which may lead to different favored conditions. In this study, the algorithms were evaluated 
using simulative and experimental data using model scattering media and absorptive and 
scattering targets. The (x, y, z) positions of the targets were retrieved with good accuracy. The 
decomposition provided by ICA is “cleaner” than that of the PCA. PCA did not clearly separate 
the two absorptive targets used in the first experiment. NMF decomposition seems to provide 
residue-free “cleaner” images than the other two methods in this study. However, since NMF is 
based on non-negativity assumption, the results might deteriorate when such a non-negativity 
assumption does not hold well. While continuous wave measurements were used in the work 
presented in this article, the approaches could be used with frequency domain and time-domain 
measurements as well. 

The work presented here focuses on detecting and locating small targets, which derive 
impetus from the need to detect tumors in early stages of growth when those are more amenable 
to treatment. All three methods are applicable for extended targets as well, and are expected to 
provide the “center of optical strength” as the location of the target.    

All three approaches are applicable for both scattering and absorbing targets, and may be 
used in clinical setting. The contrast between a tumor and surrounding normal tissue can be due 
to differences in absorption, scattering, or both absorption and scattering properties and may 
depend significantly on the wavelength of light used. However, a priori knowledge of the optical 
characteristics (absorptive or scattering) is not crucial. As has been shown [Eq. (2) and Eq. (3)] 
the expression for elements of the data matrix for absorptive targets involves Green’s Functions 
G, while that for scattering targets involves           , where         in CW [9]. This 
relationship with G provides basis for detection and localization of target(s), whether contrast is 
due to absorption, scattering, or both. We are using transillumination geometry, which is one of 
the approaches used by other researchers, and adequate signal for in vivo breast imaging is 
obtained [29, 36-39]. 

In this article, we presented results when the approaches were used to detect and obtain three-
dimensional location information of the targets.  We have demonstrated, while developing 
OPTICA [11] that a back-projection formalism can be further implemented to get a cross-section 
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image of the target [11], or the retrieved target locations can be fed into other DOI methods as a 
priori information to get three-dimensional tomographic images. Since the approaches are suited 
for small targets, these hold promise for detecting and locating breast tumors in early stages of 
growth, which is crucially important for effective treatment. Further work involving ex vivo 
(model) and in vivo imaging of cancerous breast will be needed to establish the full potential of 
these approaches.  
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Abstract: A time reversal optical tomography (TROT) method for near-
infrared (NIR) diffuse optical imaging of targets embedded in a highly 
scattering turbid medium is presented. TROT combines the basic symmetry 
of time reversal invariance and subspace-based signal processing for 
retrieval of target location. The efficacy of TROT is tested using simulated 
data and data obtained from NIR imaging experiments on absorptive and 
scattering targets embedded in Intralipid-20% suspension in water, as turbid 
medium. The results demonstrate the potential of TROT for detecting and 
locating small targets in a turbid medium, such as, breast tumors in early 
stages of growth. 
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1. Introduction 

Optical imaging of targets embedded in a highly scattering turbid medium, such as, a tumor in 
a breast, is a challenging problem because light is strongly absorbed and scattered by the 
medium leading to poor signal-to-noise ratio, as well as, loss of phase coherence and 
polarization. As a consequence distinct, sharp image of the targets may not be formed directly. 
Various frequency-domain, time-resolved, and steady-state inverse image reconstruction (IIR) 
[1–5] approaches are being pursued to form tomographic images using diffusively scattered 
light measured at the sample boundary. IIR is an ill-posed problem and the development of 
reliable and fast approaches remains a formidable task. Recent IIR algorithms, such as 
Newton-Raphson-Marquardt algorithms [6] and direct linear inversion of 3-D matrices [7], 
are time consuming. The iterative methods [7,8] may not ensure that the obtained result 
arrives at a “global minimum” or converges to a “local minimum”. Still the potential for 
developing non-invasive imaging approaches with diagnostic ability motivates the ongoing 
diffuse optical tomography (DOT) research using NIR light. 

Many applications require rather accurate determination of location of target(s) in three 
dimensions. For example, a recent study involving 35,319 patients underscores the influence 
of primary tumor location on breast cancer prognosis [9], and makes it imperative that DOT 
for breast cancer detection be able to obtain three-dimensional (3-D) location of the tumor. 
While two-dimensional (2-D) IIR approaches may provide only lateral positions, 3-D IIR 
approaches attempt to retrieve all three position coordinates of the target(s). Various 
frequency-domain, time-domain, and steady-state DOT approaches have addressed the target 
localization problem with different measures of success [1–8]. Several groups have paid 
particular attention to retrieving target location. Kepshire et al. developed a subsurface DOT 
approach to obtain location information of absorbing and fluorescent targets, but observed the 
sensitivity to vary nonlinearly with depth [10]. Mohajerani et al. reported a fluorescent 
tomography method for locating fluorescent targets embedded in a heterogeneous medium 
using partitioning of the fluorophore distribution into an object subspace and a background 
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subspace [11]. Godavarty et al. developed another fluorescent tomography approach that used 
a hemispherical breast phantom, near-infrared light-induced fluorescence from a contrast 
agent, and finite element method-based reconstruction algorithms to obtain target information 
up to a depth of 2 cm from breast phantom surface [12]. Zhao et al. introduced a layer-based 
sigmoid adjustment method to improve depth resolution of DOT and achieved positioning 
error within 3 mm for depths from 10 to 30 mm [13]. Optical tomography using independent 
component analysis (OPTICA) approach developed by Xu et al. uses multi-source probing 
and multi-detector signal acquisition scheme and a numerical algorithm based on independent 
component analysis of information theory to obtain 3-D position information of absorbing, 
scattering and fluorescent targets embedded in highly scattering turbid media, and “model 
breast” assembled using ex vivo human breast tissue [14–17]. Co-registration approaches that 
use another modality, such as, ultrasound, magnetic resonance imaging, and x-ray 
mammography for locating suspect areas and DOT for obtaining images have also been 
introduced [18–21]. 

In this article we report on the development of a time reversal optical tomography (TROT) 
[22–24] approach for NIR optical imaging of target(s) in a turbid medium, and present initial 
results of its efficacy using both simulated and experimental data. 

Time reversal (TR) invariance, the basic symmetry that commonly holds in microscopic 
physics, forms the basis for macroscopic TR imaging. TR imaging using the so-called “time-
reversal mirrors” (TRMs) has been used as an experimental tool in acoustics with practical 
applications in medicine, underwater imaging, and nondestructive testing [25–28]. The 
theoretical and numerical techniques involved in time reversal have been used for applications 
involving both acoustic waves and electromagnetic waves (radar) [28–33]. 

Devaney and associates developed a theoretical framework for a TR imaging method with 
Multiple Signal Classification (MUSIC) for finding the location of scattering targets whose 
size is smaller than the wavelength of acoustic waves or electromagnetic waves (radar) used 
for probing the homogeneous or inhomogeneous background medium in which the targets 
were embedded [34,35]. While their initial focus was on back-propagation geometry that used 
coincident acoustic or electromagnetic transceiver array for interrogating the targets, they later 
extended the formalism to transmission geometry where sources and detectors were distinct 
and separated [36]. They also generalized the theory which was based on distorted wave Born 
approximation (DWBA) to account for multiple scattering between the targets [37]. In its 
basic form TR-MUSIC found target location from knowledge of the response matrix K, which 
was constructed from multi-static data collected by the transceiver array [34,35]. TR-MUSIC 
provided higher spatial resolution than the conventional TR imaging, especially in the case 
where targets were not well resolved [34,35,38]. 

We are adapting and extending the TR-MUSIC approach to the optical domain, i.e. to 
diffusive optical imaging for detecting and locating targets embedded in a turbid medium. In 
this paper, TROT is studied in details using both simulated data and data from 
transillumination NIR imaging experiments in slab geometry. A TR matrix is obtained by 
multiplying the response matrix formed using experimental or simulated data to its conjugate 
matrix. The leading non-zero eigenvalues of the Hermitian TR matrix determine the signal 
subspace due to presence of the targets. The signal subspace is separated from the noise 
subspace using an L-curve method [5,39,40]. The vector subspace method, MUSIC, along 
with Green’s functions calculated from an appropriate forward model for light propagation 
through the turbid medium is then used to determine the locations of the targets. The MUSIC 
algorithm judges if the calculated Green’s function vector corresponding to a location in the 
sample is mapped into the signal subspace or the noise subspace. 

Several salient features make TROT attractive and potentially more promising than other 
IIR methods. First the size of the TR matrix is much smaller than those used in other IIR 
approaches, which makes solution of the eigenvalue problem easier and faster. Second, to 
determine locations of targets, TR-MUSIC approach runs the program over all voxels only 
once, and there is no need to carry out an iterative procedure done by other inverse 
approaches. Other IIR approaches seek to determine the absorption and scattering parameters 
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at all voxels into which the sample is divided. The process is iterative, computationally 
intensive, and leads to a solution of the inverse problem that is not unique because the 
problem is ill-posed, even when there is no noise. In contrast, TROT seeks to determine the 
locations of the targets first and thereafter retrieve other information, such as, the size and 
optical properties of the limited number of targets in the medium, which requires significantly 
less computation time. The focus of this paper is on finding the locations of targets. 

Our result using simulated data shows that without the presence of noise TROT 
determines the locations of the embedded targets accurately with high resolution. TROT 
exhibits promise to locate targets both in simulations and experiments even when substantial 
noise is present. Images of small targets obtained by this approach are sharper than that 
obtained by other IIR approaches. 

This paper is organized as follows. In section 2, the formalism of the TROT approach is 
presented. In section 3, the numerical algorithm of TROT is described. In section 4, the 
efficacy of the formalism is tested using simulated data. Section 5 presents the results when 
the formalism is applied to experimental data using Intralipid-20% suspension in water as the 
highly scattering turbid medium. Section 6 discusses the results. 

2. Formalism 

2.1 Diffusion approximation, perturbation method and response matrix 

The starting point for the TROT formalism is the diffusion approximation [41–43] of the 
radiative transfer equation (RTE) [44,45]. The perturbation in the light intensity distribution 
due to small inhomogeneities (targets) embedded in a homogeneous medium, to the first order 
Born approximation, can be written as [46,47] 

 

   

 

3

3

, ( , ) ( ) ,

( ) ( , ) , ,

d s d a s

d s

G cG d

D c G G d
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
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  


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r r r r r r r r

r r r r r r   (1) 

where rs, rd, and r are the positions of a point-like source of unit power, detector and target, 
respectively; ( , )sG r r  and ( , )dG r r  are the Green’s functions that describe light propagations 
from the source to the target and from the target to the detector, respectively; δµa is the 
difference in absorption coefficient and δD is the difference in diffusion coefficient between 
the targets and the background medium; and c is the light speed in the medium. 

A multi-source interrogation and multi-detector signal acquisition scheme is used to 
acquire transillumination data, from which the difference in the light intensity distribution due 
to the targets, 0    , is found, where   is the light intensity distribution measured on 
the sample boundary with targets embedded in the scattering medium and 0  is ideally the 
light intensity distribution without the targets, which in practice is approximated by an 
“average” over all the multi-source measurements. A response matrix K is constructed with 
 , to describe the transport of light from different sources through the embedded objects 

to the array of detectors [22,36]. 
For small, point-like absorptive targets, the matrix elements can be rewritten in a discrete 

form as: 

    
1

, , , 1,2, , 1,2 ,,; ,
M

d s
ij i m m m j d s

m

K G G i N j N


   r X X r   (2) 

where ( )m a m mc V   X  is the optical absorption strength of the mth target, δVm is the 
volume of mth target, ri, rj and Xm are locations of the ith detector, jth source and mth target, 
respectively. Due to the reciprocity of light propagation in the medium, ( , ') ( ', )G Gr r r r . 
Thus, 
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and 

      
1

,
M

T
ij d m m s m

m

K K g g


  X X   (4) 

where ( )sg r  and ( )dg r  are Green’s function vectors (GFVs) associated with the source array 
and detector array, respectively. GFVs are defined as 

        1 2[ , , , , , , ] ,
s

s s s T
s Ng G G Gr r r r r r r   (5a) 

        1 2[ , , , , , , ] ,
d

d d d T
d Ng G G Gr r r r r r r   (5b) 

where the superscript T denotes transpose; and Ns, Nd and M are the numbers of sources, 
detectors and targets, respectively. It is assumed the number of targets is less than the number 
of sources and detectors, min( , )d sM N N . It also holds that { }T

jiK K  describes light 
propagation from the positions of detectors through the medium and targets to sources. 

For a homogeneous background medium, the rank R of matrix K, is equal to the dimension 
of the source array vector space s  spanned by ( )s mg r , and also equal to the dimension of the 

detector array vector space d  spanned by ( )d mg r , where sN
s C  and dN

d C . For 
absorptive targets, R is equal to the number of targets M. 

Similar forms of the response matrix and GFVs can be obtained for scattering targets. As 
the dot product in the second term of Eq. (1) implies, each scattering target is represented by 
three components coexisting at one location. The elements of the K matrix for L scattering 
target may be written as 
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where ( )l l lD c V   X  is the optical scattering strength of the lth target. The K matrix for 
scattering targets can be written in a manner similar to that for absorptive targets: 
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The Green’s function for a slab geometry is [16,47] 
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1/22 2 2( ') ( ') ' 2 ) ,(kr x x y y z z kd           (8b) 

where  
1/2

/ /a i c D       in frequency domain with amplitude modulation frequency ω, 
and 0, 1, 2,k    . The extrapolated boundaries of the slab are located at 0z   and 
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2 ez d L z   , respectively, where L is the physical thickness of the slab and the 
extrapolation length ze is determined from the boundary condition of the slab [48,49]. 

Under ideal conditions, when all three scattering components of each of the L scattering 
targets are well-resolved, the rank of K contributed by L scattering targets is 3L. In practice, 
four components (one for absorption and three for scattering) are calculated for each target, 
since the targets may have both scattering and absorptive characteristics, or the exact nature 
may not be known a priori. The dominant characteristic is used to label the target as 
absorptive or scattering in nature. 

2.2 Point Spread Functions 

If light emitted by a source of unit power at target position X propagates in the sample 
medium, the signal measured by the detector array at the sample boundary is ,( )d

iG r X . The 
signal is then “time-reversed” and back-propagated with the Green’s function of the 
background medium. TR operation is phase conjugation in Fourier domain [28,50]. So the 
signal evaluated at r is [34] 
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where * denotes phase conjugate, † denotes adjoint, and     denotes inner product. 
,( )dH r X  is the detector array point spread function (PSF). A source array PSF can be 

similarly formed as 

          
†, , .s s s s sH g g g g r X X r X r   (10) 

Due to the time reversal assumption, ,( )dH r X  peaks at r X , so it can be considered as 
an image of the source at X formed by the TR detector array. PSF vanishes when r is far away 
from X. A similar interpretation can be used for ,( )sH r X . 

2.3 Time reversal and MUSIC 

The TR matrix may be constructed to represent light propagation from sources to detectors 
and back denoted by TSDDS, or to represent light propagation from detector positions to source 
positions and back denoted by TDSSD, a consequence of the reciprocity of light propagation 
[29,34,38,50,51]. For frequency-domain data, †

SDDST K K , and ?( )T T T
DSSDT K K K K  , 

where response data matrix K is formed using modulated intensities, instead of the field with 
phase information used in the conventional TR. For CW measurements, T

SDDST K K , and 
T

DSSDT KK  (K is real and only includes intensity values). 
Since TSDDS and TDSSD are Hermitian ( †T T ), they have complete sets of orthonormal 

eigenvectors vj ( 1, , sj N ) and ui ( 1, , di N ), with a common set of non-negative real 
eigenvalues. For min( , )s dM N N  absorptive targets without the presence of noise, the rank 
of TSDDS and TDSSD is M. The eigenvalues 0j  , when 1, ,j M , and 0j  , when 

1, , sj M N   for TSDDS and 1, , dj M N   for TDSSD. The eigen system { , , 0}j j jv u   , 
1, ,j M , is related to the targets. The TR matrix TSDDS can be written as [22,34] 
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Subsequent formalism may be different depending on whether the targets are “well 
resolved” or “poorly resolved.” 
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2.3.1 Well-resolved targets 

If the thm and 'thm  targets ( 'm m ) are well resolved, defined by the conditions: 
', 0( )s m mH X X  and ', 0( )d m mH X X , i.e. the GFVs at mX  and 'mX  are orthogonal, 

 
2

' ' '( ) ( ) ( ), ,d m d m d m m d m mmg g H g   X X X X X . So we have 
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where   denotes L2 norm [52]. The eigenvectors of TSDDS are proportional to the phase 
conjugate of the GFVs associated with the M targets [22,34], i.e. 
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The eigenvectors are 
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with eigenvalues    
2 22

j j d j s jg g  X X , 1, ,j M . Thus TSDDS is a projection 

operator that projects a vector onto the conjugate of the source array vector space s . The jth 
non-zero eigenvalue λj is directly related to the optical strength τj of the jth target. Similar 
equations can be derived for TDSSD, which is a projection operator for the conjugate of the 
detector array vector space d . The eigenvectors of TDSSD are 
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1, ,j M , with the same eigenvalues as TSDDS. 
Therefore, for well-resolved targets, the target locations can be determined by the inner 

product [22,34,36,51] 
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or 
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where Xp is a test target position, which is the position of any voxel in the sample space. s
j  

and d
j  peak when Xp is the position of the jth target. In the classical TR imaging 
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[25,29,38,50], for ideally resolved targets, each eigenvector of the TR operator can be used to 
focus on one particular target. Here ψj

s and ψj
d represent focusing of signals from the source 

and detector planes on to the target position, respectively. Use of the eigenvectors vj and uj, 
1, ,j M , ensures that the jth target is sorted out. When TSDDS and source array vector space 

(TDSSD and detector array vector space) are used, we call the scheme SDDS (DSSD). Both 
source and detector arrays can be considered simultaneously to locate the target by calculating 
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  (17) 

1, ,j M , which is computationally equivalent to a process that light emitted from a virtual 
source of unit power at a test target position Xp, propagates to the TR source array and back to 
a true target position Xj; then it is re-emitted and further propagates to the TR detector array 
and back to the original position Xp. ψj peaks when the test target position Xp coincides with 
the true target position Xj associated with the jth eigenvector. 

2.3.2 Poorly-resolved Targets and MUSIC 

When the targets are too close to each other or the sources and/or detectors are significantly 
sparse, the targets are considered to be poorly resolved and the GFVs at Xm and Xm' are not 
orthogonal. In such cases, the eigenvectors vj and uj do not correspond one-to-one with the 
GFVs associated with target positions Xm ( , 1, ,j m M ). The image resolution degrades 
because of contributions from multiple targets. To solve this problem, the subspace-based 
method, MUSIC was implemented with TR [34,36,51]. MUSIC algorithm is based on the idea 
that although the vectors characterizing the targets are no longer orthogonal with each other, 
they are all located in the signal subspace, which is orthogonal to the noise subspace. 

The orthonormal sets *{ }jv  ( 1, , sj N ) and *{ }ju  ( 1, , dj N ) span the spaces sNC  

and dNC  associated with the source and detector arrays, respectively. While *{ }jv  and *{ }ju , 

with 0j  , form the signal subspaces on the source and detector arrays, *{ }s
jv  and 

*{ }d
ju  ( 1, ,j M ), respectively; *{ }jv  and *{ }ju , with 0j  , form the noise 

subspaces, *{ }s
jv  ( 1, , sj M N  ) and *{ }d

ju  ( 1, , dM Nj   ), respectively. 

Thus sN s sC    and dN d dC    [36,51]. Since the dimensions of the signal 
subspaces s  and d  and of the GFV spaces s  and d  are all equal to M, s

s   and 
d

d   [51]. The GFVs, ( )s mg X  and ( )d mg X , 1, ,m M , are linear combinations of vj* 
and uj*, 1, ,j M , respectively. Therefore, ( ) s

s mg X  and ( ) d
d mg X , 1, ,m M , 

associated with mth target are orthogonal to * s
jv   ( 1, , sj M N  ) and * d

ju   
( 1, , dj M N  ), respectively: 

    *, 1, ,0, ,T
j s m j s m sv g v g j M N   X X   (18a) 

    *, 1, .0, ,T
j d m j d m du g u g j M N   X X   (18b) 

The locations of targets can be determined by calculating the following squared sum of 
inner products: 

  
2

1

,( )
sN

T
s p j s p

j M

Q v g
 

 X X   (19a) 
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  
2

1

.( )
dN

T
d p j d p

j M

Q u g
 

 X X   (19b) 

( )s pQ X  and ( )d pQ X  vanish when the test target position Xp is a true target position. Similar 
to Eq. (17), s dQ Q Q  can be calculated with both source and detector arrays considered 
simultaneously. An alternative approach to accentuate a target position is to plot a pseudo 
spectrum defined as 

      
2

s p s p s pP g QX X X   (20a) 

associated with the source array, or 

      
2

d p d p d pP g QX X X   (20b) 

associated with the detector array, or 

      p s p d pP P PX X X   (20c) 

associated with both source and detector arrays [22,34,36,51], where 
2

( )s pg X  and 
2

( )d pg X  are used for normalization. The poles of the pseudo spectrum correspond to target 
locations. These MUSIC pseudo spectra can also be used to locate well-resolved targets. 

Since the dimension of the signal subspace is generally much smaller than that of the noise 
subspace, it is preferred that in Eq. (19) and Eq. (20), the signal subspace is used rather than 
the noise subspace for ease of computation. Using the properties of the projection operators 
associated with the source and detector arrays [22,34,36,51], ( )s pQ X and ( )d pQ X  can be 
calculated as 

      
2 2

1

,
M

T
s p s p j s p

j

Q g v g


 X X X   (21a) 

      
2 2

1

.
M

T
d p d p j d p

j

Q g u g


 X X X   (21b) 

When the targets are embedded in a non-uniform medium, or when there is significant 
noise present, the noise or false targets contribute significantly to the eigenvalues. The near-
zero and non-zero eigenvalues are not as well separated as when there are no noise. In this 
case, the rank of the TR matrix is larger than the number of targets M. The TR matrix may 
even be full rank. However, as long as M is less than min( , )s dN N  and eigenvalues 
contributed by the noise and false targets are smaller than those contributed by the real targets 
with a threshold , the target positions can be obtained using a pseudo spectrum [36,51] 
associated with the source array, 

      
2

,
j

s p s p s pP g Q
 

X X X   (22) 

where 
22

( ) ( ) ( )
j

j

T
s p s p j s pQ g v g







 X X X . Pseudo spectra associated with the detector 

array or with both source and detector arrays can also be obtained similarly. In practice, the 
threshold is selected to separate the signal and noise subspaces using a method similar to L-
curve regularization [39]. 
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When scattering targets are concerned, the GFVs g  ( , ,x y z  ), associated with the 
test target position Xp will be used to calculate the pseudo spectrum. For a target with both 
absorption and scattering properties at the wavelength of probing light, one GFV 
corresponding to absorption constructed as g and three GFVs corresponding to scattering 
target constructed with g , ( , ,x y z  ), are used to calculate the pseudo spectrum over 
every voxel. Ideally, for an absorptive and scattering target four pseudo-values will be 
obtained for every target position. If the dominant value corresponds to the absorptive (any of 
the scattering) GFV the target will be identified as absorptive (scattering) in nature. 

3. Algorithm 

Implementation of TROT to locate targets embedded in a highly scattering turbid medium 
involves the steps outlined below. For simplicity, the sizes of source array and detector array 
are assumed to be the same, i.e., d sN N N  . 

(a) A response matrix K with size N × N is constructed using experimental data (or 
estimated data in simulation). Data consist of the perturbations in the light intensity 
distribution due to the targets, 0    , where   is the light intensity distribution 
measured on the sample boundary with targets embedded in the scattering medium 
and 0  is ideally the light intensity distribution without the targets. In practice, 0  is 
approximated by an “average” over all the multi-source measurements, while in 
simulation it can be estimated without such approximation. 

(b) A detector array TR matrix, T
DSSDT KK with size N × N for CW measurements is 

constructed. All the eigenvalues and the eigenvectors of the TDSSD matrix are 
computed. The eigenvectors are orthogonal to each other. It is to be noted that in this 
procedure we only deal with a matrix of dimension N, not a matrix of dimension of N 
× N as done in traditional inverse procedures. 

(c) The non-zero eigenvalues of TDSSD belonging to the signal subspace are separated 
from the near-zero eigenvalues belonging to the noise subspace using the L-curve 
method [5,39,40]. 

(d) MUSIC approach [34,36,51] is next used to determine the locations of the targets as 
follows. (i) The 3-D medium is divided into a certain number of voxels. A detector 
array GFV, ( )d pg X , associated with an absorptive test target position Xp at pth voxel 
is calculated using Diffusion Approximation of RTE. Other proper forward models 
could be used as well. In order to check if ( )d pg X  is located in the signal subspace 
or in the noise subspace, a pseudo spectrum associated with the detector array is 
computed using Eq. (20b), where M is the dimension of the signal subspace found in 
step (c). If ( )d pg X  is located in the signal subspace, the corresponding pseudo value 

( )pP X  in Eq. (20b) will become a maximum. (ii) Pseudo spectra are also calculated 
using the other three GFVs, ( )d pg X , ( , ,x y z  ) for scattering property. (iii) All 
pseudo values are put together and sorted in a descending order. Since the leading 
pseudo values at Xp are associated with targets and specific GFVs, the positions of 
the embedded targets and their nature (absorptive or scattering) are determined. The 
pseudo spectrum in the whole sample space can be used to plot pseudo tomographic 
images. 

In this approach, only a single run is needed for calculating the pseudo spectrum and no 
iterative procedure is involved, which makes it faster and computationally less intensive than 
the traditional IIR approaches. Similar procedure can be used for application of TROT when 
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d sN N . The pseudo spectrum associated with either the source array, or the detector array, 
or both source and detector arrays, as outlined in Eq. (20) can be used to obtain target 
positions. 

It is instructive to compare the computational complexity of TROT formalism with that of 
typical iterative methods. For a typical iterative method, an equation b = Wx is solved to find 
the inhomogeneities (targets), where W is a weight matrix with size NdNs × N, N is the number 
of voxels, b is an NdNs × 1 vector describing the perturbation in the detected light intensity due 
to the presence of inhomogeneities, and x is the perturbation or variation in the optical 
properties from the background values with dimension of N × 1. The computational 
complexity is typically O(NdNsN2) for a single iteration. The computational complexity of 
TROT is much smaller than that for even one iteration of an iterative method. For the SDDS 
scheme, the complexity for TROT is O(NdNs

2) if NdNs > NNk, and O(NsNNk) otherwise, where 
Nk is the dimension of the signal subspace. In the DSSD scheme, the complexity is O(NsNd

2) if 
NdNs > NNk, and O(NdNNk) otherwise. TROT does not involve any iteration. 

In the following sections, TROT will be tested using simulation and experimental data. 

4. Testing TROT with simulated data 

To test the efficacy of the TROT approach, we first consider a rather challenging task of 
detecting and locating six targets embedded in a simulated sample which is a 40-mm thick 
uniform scattering slab. Its absorption and diffusion coefficients are µa = 1/300 mm1 and D = 
1/3 mm, respectively. The incident CW beam was step-scanned in an x-y array of 41 × 41 grid 
points with a step size of 2 mm on the input plane covering an 80 mm × 80 mm area. Light 
transmitted from the opposite side (output plane) was recorded at 41 × 41 grid points covering 
the same area. No random noise was added. 

The six (M = 6) point-like absorptive targets, with absorption coefficient difference of ∆µa 
= 0.01 mm1 from the background, were placed at A (24 mm, 26 mm, 9 mm), B (38 mm, 38 
mm, 15 mm), C (38 mm, 38 mm, 21 mm), D (40 mm, 38 mm, 21 mm), E (44 mm, 42 mm, 21 
mm) and F (30 mm, 30 mm, 31 mm), respectively. The origin (0 mm, 0 mm, 0 mm) was 
located at the upper-left corner of the input boundary (source plane) of the sample. The 
medium was divided into 40 × 40 × 20 voxels, with each voxel of size 2 mm × 2 mm × 2 mm. 
As can be seen from the assigned coordinates, targets C and D are located at two adjacent 
voxels, and are close to target E, and these three targets are located in the same z layer. 
Consequently, targets C and D are expected to be very difficult to resolve, and hard to 
distinguish from target E. Target B and C have the same lateral position x and y, and different 
depths. Target A is close to the source plane, while F is close to the detector plane. 

Using the Diffusion Approximation of the RTE as the model for light propagation in slab 
geometry, signals arising from light propagation from the source array to the detector array 
through medium with and without the targets were calculated. The difference between the two 
sets, which is the perturbation due to the targets, was used as the “simulated data”. The size of 
the K matrix is N × N = 1681 × 1681. The TR matrix T = KKT was constructed. Then, 1681 
eigenvalues and 1681 eigenvectors of T were found. 

The first seven (7) computed eigenvalues in a descending order of magnitude are listed in 
the first column of Table 1. The leading twenty eigenvalues are plotted in Fig. 1(a) on a 
logarithmic scale. The first six (6) eigenvalues are at least 10 orders-of-magnitude higher than 
the 7-th and other smaller eigenvalues. Hence, the dimension of the signal subspace and the 
number of targets are determined to be six. The pseudo spectrum (consisting of 40 × 40 × 20 
× 4 elements) was calculated using the M eigenvectors in the signal subspace. The values of 
elements in the pseudo spectrum were sorted in a descending order. The seven leading pseudo 
values are listed in Table 1 with the corresponding positions of voxels. The six peaks are 
found to be associated with the GFVs for absorptive targets. Namely, the corresponding six 
targets are identified to be absorptive targets. 

All six large pseudo-values are located at the exact known target locations and their values 
are approximately 9 orders-of-magnitude larger than those at their neighborhood locations. A 
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2-D slice of the pseudo spectrum on z = 21 mm plane is shown in Fig. 1(b), showing the 
locations of the three difficult targets. 

(a) (b)
 

Fig. 1. (a) A plot of first twenty (20) eigenvalues on logarithmic scale. (b) 2-D slice of the 
pseudo spectrum on z = 21 mm plane showing the location of the three difficult targets 
described in the text. Similar 2-D slices were also obtained for z = 9-mm, 15-mm, and 31-mm 
planes (not shown). 

Table 1. Eigenvalues, pseudo spectrum and the corresponding positions 

Leading 
Eigenvalues 

Poles of Pseudo 
Spectrum 

Retrieved Position 
(x, y, z) mm 

Known Position 
(x, y, z) mm 

2.6697E-010 1.5911E + 015 (44, 42, 21) (44, 42, 21) 
1.1722E-011 8.6376E + 014 (38, 38, 15) (38, 38, 15) 
4.0081E-013 7.9559E + 014 (38, 38, 21) (38, 38, 21) 
3.6676E-014 7.2328E + 014 (40, 38, 21) (40, 38, 21) 
5.2629E-016 6.3010E + 014 (24, 26, 9) (24, 26, 9) 
6.4837E-017 2.1159E + 014 (30, 30, 31) (30, 30, 31) 
2.8337E-039 2.4353E + 005 (38, 38, 19)  

… …   

With the highly encouraging result from simulation even for a considerably challenging 
task, we proceeded to test the approach for the realistic situation of detecting and locating 
targets from experimental data. 

5. Testing TROT using Experimental Data 

5.1 Experimental materials and methods 

Three different experiments with three different samples were carried out to test the efficacy 
of the TROT approach in detecting and locating targets in a turbid medium. All three samples 
used a 250 mm × 250 mm × 60 mm transparent plastic container filled with Intralipid-20% 
suspension in water as the background medium. The concentration of Intralipid-20% was 
adjusted to provide an estimated [53,54] absorption coefficient µa ~0.003 mm1 at 790 nm, 
and a transport mean free path lt ~1 mm, which were similar to the average values of those 
parameters for human breast tissue, while the cell thickness of 60 mm was comparable to 
thickness of a typical compressed breast. 

In the first experiment, the depth (position along z-axis) of an absorptive target was varied 
to explore how the accuracy of position estimate depended on depth. The target was a glass 
sphere of diameter ~9 mm filled with ink dissolved in Intralipid-20% suspension in water (µs 
was adjusted to be the same as that of the background medium, while µa 0.013 mm1 was 
about 3 times higher than that of background medium). 
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In the second experiment, the separation between two absorptive targets was varied to test 
how close those could be and yet be resolved as separate objects. Both the targets were similar 
to the target in the first experiment. 

In the third experiment, the depth of a scattering target was varied to explore the efficacy 
of TROT in locating and characterizing a scattering target. The target was a glass sphere of 
diameter 10 mm filled with Intralipid-20% suspension in water to provide a transport mean 
free path lt of 0.25 mm, and a scattering coefficient µs 11 mm1. 

A multi-source interrogation and multi-detector signal acquisition scheme, shown in Fig. 
2, was used to acquire data. A 100-mW 790-nm diode laser beam was used to illuminate the 
samples. A 1024 × 1024 pixels charge coupled device (CCD) camera equipped with a 60-mm 
focal-length camera lens was used on the opposite side of the sample to detect the transmitted 
light on the boundaries of the slab samples (detector plane). The pixel size was 24 µm. The 
multi-source illumination scheme was realized by scanning the sample across the laser beam 
in a two-dimensional x-y array of grid points using a computer-controlled translation stage. 
The first and third samples were scanned across the laser beam in an array of 9 × 9 grid 
points, and the second sample was scanned in an array of 15 × 11 grid points, with a step size 
of 5 mm in all cases. The scanning and data acquisition processes were controlled by a 
personal computer (PC). Raw transillumination images of the sample were recorded by the PC 
for each scan position, and stored for subsequent analysis. A typical image, which is a 2-D 
intensity distribution, is shown in the right side of Fig. 2. 

x

y

Source 

Plane

Detector 

Plane

Sample
z

PC

CCDLaser

 
Fig. 2. A schematic diagram of the experimental arrangement for imaging objects embedded in 
a turbid medium. (Key: CCD = charge coupled device, PC = personal computer) Inset (below) 
shows the 2-D array in the input plane that was scanned across the incident laser beam, and 
inset (right) shows a typical raw image. 

While we have scanned the sample and kept the source fixed in the experiments reported 
here, a more clinically relevant approach would be to scan the source and fix the sample. In 
the experimental arrangement, the source scanning may be accomplished by: (a) delivering 
the beam using an optical fiber, and translating the delivery end of the fiber in an x-y array 
using a computer-controlled translation stage; or (b) raster scanning the laser beam using two 
orthogonal (x-y) galvanometers. The main change in the processing of data would involve 
alignment of the images so that laser beam positions are overlapped before averaging to 
generate the background image. 

5.2 Data Processing and Analysis 

From each image, a region of interest was cropped out and then every 5 × 5 pixels in the 
cropped image were binned to one pixel to enhance the signal-to-noise ratio. The background 
image was generated by taking an average of the original images for all scan positions, which 
is a reasonable approximation since for most of the scan positions the target(s) is (are) not 
along the direction of the incident beam. Then the background image was also cropped and 
binned corresponding to the region of interest for each scan position. Perturbation in the light 
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intensity distribution   due to targets in each image was found by subtracting the 
background image from each individual image. The response matrix was constructed using 
the light intensity perturbations,  . The TR matrix was generated by multiplying the 
response matrix by its transpose for our continuous-wave (CW) probing scheme. The 
eigenvalue equation was solved and the signal subspace was selected and separated from the 
noise subspace. MUSIC was then used to calculate the pseudo spectrum for all voxels in the 
3-D space of the sample. For each voxel, four pseudo values, one for absorption and three for 
scattering as described in Algorithm step (d), were calculated. The voxel size was 0.77 mm × 
0.77 mm × 1 mm. By sorting the pseudo spectrum in a descending order, the target(s) were 
located. 

The voxel size to be used in reconstruction and its relation to the target size is an important 
consideration. In general, smaller voxels provide reconstruction of higher resolution at the 
cost of increased computational time. Finer details of an extended target may be obtained 
using smaller voxels. Decreasing the voxel size indefinitely may not improve resolution 
because of the diffusive nature of light propagation in the turbid medium. However, the 
computation time increases dramatically, which has been observed by other researchers [55]. 
The optimal voxel size for a given reconstruction problem will depend on factors, such as, 
target size, experimental geometry, and noise level. 

Since the signal used in image reconstruction is taken to be the difference between the 
image recorded for a scan position and the background image, estimation of the background 
image is an important issue. This is a common problem for every diffuse optical imaging 
modality using perturbation method, and needs further elaboration. We accumulated data in 
the transillumination slab geometry, and generated the background image by averaging 
images for all scan positions after proper alignment with respect to the incident source 
position. This averaging method for generating background image worked well for small 
targets that we used in our experiments, as the ratio of sample volume to target volume was 
quite high (~500:1). This volume ratio for breast and a tumor in early stages of growth will 
also be substantially high for the averaging method to be applicable. Assuming a scenario 
where the volume ratio is substantially smaller than in above examples, a modified approach 
would be to select recorded images which were minimally affected by embedded targets for 
averaging [56]. As long as the targets only occupy a limited volume within the host medium, a 
clean background image can be generated in this fashion. It should also be noted that while 
estimation of target optical properties, such as absorption coefficient and scattering 
coefficient, are sensitively dependent on background image estimation, estimation of target 
positions are not so sensitive. 

Several alternative ways of generating background image are suggested in the literature. 
One experimental approach is to record image using a phantom that has the same average 
optical properties as the sample, such as human breast [57]. Along the same line, image of the 
healthy contralateral breast taken under the same experimental conditions as that of the 
suspect breast may be used as background image for breast imaging [58]. Some authors have 
suggested acquiring data at a wavelength for which the target(s) and the background have 
identical optical properties for assessing the background, e.g., measurement using 805-nm 
light for which hemoglobin and oxyhemoglobin have the same absorption coefficient may 
serve as background to image hemoglobin oxygenation [59]. Still another approach is to 
compute the background using an appropriate forward model [18]. Any of these approaches 
may be employed for generating the background image for use with the TROT formalism 
presented here. 

The geometries commonly used in DOT include slab, cylindrical, hemispherical, and 
semi-infinite; and different source-detector combinations have been used to record images in 
these geometries. As long as multiple source-detector combinations provide multiple angular 
views of the sample the TROT formalism can be adapted to obtain target location for these 
geometries. TR imaging and TR-MUSIC was originally developed for reflection 
(backscattering) geometry that used coincident transceiver array to detect the return signal 
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[28–30,34,35]. With requisite modification in the experimental arrangement TROT would be 
suited for use in the reflection geometry. 

5.3 Results 

5.3.1 Single absorptive target at different depths 

In the first experiment, only one target was used, the lateral (x, y) position of the target was 
kept the same at (25.5 mm, 24.7 mm), while seven different depths (position along z-axis) of 
15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm and 45 mm were used. The eigenvalue 
spectrum plotted on logarithmic scale for the target at z = 30 mm is shown in Fig. 3. Similar 
eigenvalue spectra were obtained for other cases. 

 
Fig. 3. A semi-log plot of eigenvalue spectrum with first 40 leading eigenvalues for the target 
at z = 30 mm. 

Both SDDS and DSSD pseudo spectra were calculated using Eq. (20). The target was 
identified as an absorptive target. In the DSSD pseudo spectrum, the absorptive pseudo value 
at the peak position is ~41 times of the scattering pseudo value associated with z dg , and 
even larger than those associated with x dg , and y dg , as shown in Table 2. Similarly in the 
SDDS scheme, the absorptive pseudo value at the peak position is ~33 times of the scattering 
pseudo value with z sg , and much larger than the other two. 

Table 2. Pseudo values associated with absorptive and scattering components at the peak 
position 

Scheme with 
GFV (g) 

Absorptive 
pseudo value 

Scattering pseudo value 

x g  y g  z g  
DSSD (gd) 1305.0 1.0 1.0 31.7 
SDDS (gs) 2729.3 14.0 1.1 81.6 

Three-dimensional tomographic images were generated using the whole absorption pseudo 
spectrum for all voxel positions in the sample. The left pane of Fig. 4(a) shows a tomographic 
image for the target at z = 30 mm. The spatial profiles in the x, y and z directions, shown in the 
right pane of Fig. 4(a) were used to assess the target location. Similar images were generated 
for other depths. The retrieved target positions are compared with known positions in Table 3. 

As is evident from Table 3, when DSSD scheme was used, the TROT-assessed lateral 
positions (x, y) were within 0.6 mm of the known values, which is an excellent agreement. 
The accuracy of the z-position was found to be optimal when the target was located in the 
middle plane of the sample, and deteriorated when the target was closer to the source plane or 
the detection plane. When using SDDS scheme, the TROT-assessed lateral positions were 
also within 0.6 mm of the known positions, except for z = 40 mm and 45 mm, where the error 
in y direction was 1.2 mm and 2 mm, respectively. However, remarkable improvement in the 
accuracy of the z-position estimation was observed, the error Δz being within 0.5 mm for all 
cases except for z = 35 mm, where the error was 1.5 mm. We ascribe the superior 
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performance of the scheme using TSDDS, to the much larger size of the detector array (1024 × 
1024) than that of the source array (9 × 9) used in the experimental arrangement. 

Table 3. Positions of one target located at different depths 

Known Positions 
x, y, z (mm) 

DSSD Scheme SDDS Scheme 
Retrieved 
Positions 

x, y, z (mm) 

Error 
Δx, Δy, Δz 

(mm) 

Retrieved 
Positions 

x, y, z (mm) 

Error 
Δx, Δy, Δz 

(mm) 
25.5, 24.7, 15 24.9, 24.4, 17.5 0.6, 0.3, 2.5 24.9, 25.2, 15.5 0.6, 0.5, 0.5 
25.5, 24.7, 20 25.7, 24.4, 21.5 0.2, 0.3, 1.5 24.9, 25.2, 20.5 0.6, 0.5, 0.5 
25.5, 24.7, 25 25.7, 24.4, 26.5 0.2, 0.3, 1.5 25.7, 24.4, 24.5 0.2, 0.3, 0.5 
25.5, 24.7, 30 25.7, 24.4, 30.5 0.2, 0.3, 0.5 25.7, 25.2, 29.5 0.2, 0.5, 0.5 
25.5, 24.7, 35 25.7, 25.2, 33.5 0.2, 0.5, 1.5 24.9, 24.4, 36.5 0.6, 0.3, 1.5 
25.5, 24.7, 40 24.9, 25.2, 36.5 0.6, 0.5, 3.5 24.9, 25.9, 40.5 0.6, 1.2, 0.5 
25.5, 24.7, 45 24.9, 25.2, 39.5 0.6, 0.5, 5.5 24.9, 26.7, 45.5 0.6, 2.0, 0.5 

(a)

(b)

(c)

 
Fig. 4. Pseudo image of the target (left pane) and corresponding spatial intensity profiles (right 
pane) when the target is located at z = 30 mm: (a) experimental data; (b) simulation without 
any added noise; and (c) simulation with 20% Gaussian noise added. The pseudo values are 
calculated using Eq. (20). 

It should be noted that the choice of either DSSD or SDDS scheme depends on 
experimental parameters, such as, the number and density of sources and detectors, and does 
not depend on the characteristics of the background medium. When more detectors than 
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sources are used and inter-detector spacing is small, SDDS would provide better resolution 
than DSSD, and vice versa. However, due to the diffusive nature of light propagation in the 
turbid medium, increasing the numbers and decreasing the spacing of the sources/detectors 
beyond a limit may not always improve the results. 

While the target position could be obtained from the experimental data, it was observed 
that the difference between the smaller eigenvalues in the signal subspace and the larger 
eigenvalues in the noise subspace were not as pronounced as observed in the simulation in 
Section 4. To assess the effect of noise and to what extent noise may be present in the 
experimental data; we generated simulated data mimicking the experimental conditions, and 
added different noise levels. The lateral positions were (25.5 mm, 24.7 mm) and all seven z-
positions (depth) of 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, and 45 mm were tested. 
Typical pseudo images generated for z = 30 mm without and with 20% Gaussian 
multiplicative noise to compare with the experimental result are shown in Fig. 4(b) and Fig. 
4(c), respectively. Simulated data provided the known position coordinates. 

The simulated spatial profiles with zero added noise are much sharper than the profiles 
obtained from experimental data, or from simulated data with 20% added Gaussian noise. 
Broadening of spatial profile is an indication of the uncertainty in determination of position 
coordinates. Results from simulation show that uncertainty in position determination increases 
with added noise, and that experimental data behave in a way similar to simulated data with 
added noise. 

5.3.2 Resolving two absorptive targets 

In the second experiment using two targets the depth (z) and height (y) were kept same (z = 30 
mm, y = 26.0 mm), while three different center-to-center separations, Δx of ~12.6 mm, 17.6 
mm, and 27.6 mm, between them along the x-axis were considered. A cross-sectional pseudo 
image of the targets when separated by a center-to-center distance of 27.6 mm, generated 
using the pseudo spectrum is shown in the left pane of Fig. 5(a). Figure 5(b) shows a similar 
image for the separation 12.6 mm (separation between nearest edges ~4 mm). A similar image 
for the separation 17.6 mm was also obtained (not shown in the figure). The profiles in the x, y 
and z directions through the right target are shown in the right panes of Fig. 5(a)–Fig. 5(c). 
These profiles were used to assess locations of the targets, and the separation between the two 
targets. In all cases, the targets were determined to be absorptive, because peaks occurred in 
the pseudo spectrum with the GFVs corresponding to absorption property. 

The known and retrieved positions from the experiments and separations Δx between the 
two targets appear in Table 4. In all the cases, the two targets were resolved, even when their 
center-to-center separation was 12.6 mm apart, nearest sides separated by only ~4 mm. For all 
retrieved positions, the maximum error in the lateral positions is 3.0 mm, and the maximum 
error in the axial positions is 1.5 mm. The errors in the lateral positions increase as the targets 
get closer. We ascribe this increase in error in the lateral position to the crosstalk between the 
two targets, the peak due to one target being affected by the other. The shift in the peaks is 
also affected by noise. When the two targets are very close or significant noise is present, the 
two peaks merge, so that the two targets are not resolved. This behavior was confirmed in 
simulations.  

The results were compared with simulated data using similar conditions. For the more 
challenging case of two targets located at z = 30 mm and separated by 12.6 mm, exact target 
locations were found when no noise was added. With 10% noise present, the positions of the 
two targets were found to be (39.0 mm, 24.8 mm, 29.0 mm) and (30.0 mm, 24.8 mm, 29.0 
mm) with target separation 9.0 mm, compared to 12.6 mm (known) and 6.9 mm retrieved 
from experiment. The pseudo image and the corresponding profiles through the right target 
are shown in Fig. 5(c). Similar images were also obtained for the left target. The retrieved 
separation between the two targets in simulation with 10% noise was smaller than the actual 
separation. But the error was less than the experimental result. However, when 20% noise was 
added, the two peaks merged (not shown here). 
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(b)

(c)

(a)

 
Fig. 5. (a) (Experiment): TROT generated cross-section pseudo image when the targets are 
separated by 27.6 mm is shown in the left pane and pseudo-value profiles through the right 
target along x, y and z directions are shown in the right pane. (b) (Experiment): TROT 
generated cross-section pseudo image when the targets are separated by 12.6 mm is shown in 
the left pane and the corresponding spatial profiles through the right target along x, y and z 
directions are shown in the right pane. (c) (Simulation): TROT generated cross-section pseudo 
image when two targets are separated by 12.6 mm is shown in the left pane and the 
corresponding pseudo-value profiles are plot in the right pane. In simulation 10% Gaussian 
noise is added for comparison with the experimental results. P is pseudo value calculated using 
Eq. (20). 

Table 4. Positions of two targets separated with different distances 

Known 
Separation 
[Δx (mm)] 

Target # Known 
Position 

[x, y, z (mm)] 

Retrieved 
Position 

[x, y, z (mm)] 

Error 
(mm) 

Retrieved 
Separation 
[Δx (mm)] 

12.6 1 27.6, 26.0, 30 30.3, 24.4, 28.5 2.7, 1.6, 1.5 6.9 2 40.2, 26.0, 30 37.2, 25.2, 29.5 3.0, 0.8, 0.5 
17.6 1 25.1, 26.0, 30 26.4, 24.4, 28.5 1.3, 1.6, 1.5 14.6 2 42.7, 26.0, 30 41.0, 25.2, 29.5 1.7, 0.8, 0.5 

27.6 1 20.1, 26.0, 30 19.5, 25.2, 29.5 0.6, 0.8, 0.5 27.6 2 47.7, 26.0, 30 47.1, 25.2, 30.5 0.6, 0.8, 0.5 

The limits on the size of targets, separation between the targets, and the target-to-
background contrast ratio that are needed to detect and locate the targets depend on noise 
level, experimental parameters (such as, number and concentration of sources and detectors), 
and ultimately on the diffuse nature of light propagation in the turbid medium. Coordinated 
experimental work and numerical modeling will be needed to assess those limits. 
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5.3.3 Single scattering target at different depths 

(a)

(b)
 

Fig. 6. Pseudo image of the target (left pane) and corresponding spatial intensity profiles (right 
pane) when the target is located at z = 30 mm: (a) experimental data; (b) simulation with 20% 
Gaussian noise added. P is pseudo value calculated using Eq. (20). 

The experiment involving the third sample is the same as the first one except that the target 
was scattering in nature. The scattering target was a 10-mm diameter glass sphere filled with 
Intralipid-20% suspension in water, whose concentration was adjusted to provide lt = ~0.25 
mm, µs = 11.3 mm1. The same scanning and data acquisition scheme was used as for the 
absorptive targets and the following z-positions of the target were used: 15 mm, 20 mm, 25 
mm, 30 mm, 35 mm, 40 mm, and 45 mm. DSSD scheme was used to calculate the pseudo 
spectrum. A cross-section pseudo image and the corresponding spatial profiles are displayed 
in Fig. 6(a) when z = 30 mm. It is compared to the simulation results with 20% Gaussian noise 
(Fig. 6(b)). The lateral (x, y) spatial profiles of the pseudo image generated using simulated 
data are considerably wider, while the axial (z) spatial profile is narrower than those obtained 
using experimental data, and the peak values from the two cases are of the same order. The 
retrieved target positions are listed in Table 5. SDDS scheme was also used and provided with 
similar results. 

Table 5. Positions of one scattering target located at different depths 

Known Positions 
[x, y, z (mm)] 

Retrieved Positions 
[x, y, z (mm)] 

Error 
[Δx, Δy, Δz (mm)] 

25.7, 24.5, 15 24.9, 25.9, 18.5 0.8, 1.4, 3.5 
25.7, 24.5, 20 27.2, 26.7, 20.5 1.5, 2.2, 0.5 
25.7, 24.5, 25 25.7, 26.7, 23.5 0.0, 2.2, 1.5 
25.7, 24.5, 30 24.9, 25.2, 32.5 0.8, 0.7, 2.5 
25.7, 24.5, 35 24.9, 25.2, 36.5 0.8, 0.7, 1.5 
25.7, 24.5, 40 24.9, 25.9, 41.5 0.8, 1.4, 1.5 
25.7, 24.5, 45 24.9, 25.9, 45.5 0.8, 1.4, 0.5 

In Fig. 5, and more prominently in Fig. 6, the image resolution seems better for 
experimental data than simulated data. Since the peak values and bandwidth of lines (the 
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poles) in the pseudo spectrum depend strongly on the noise, this difference in image 
resolution is presumably due to lower noise level in the experiments than that used in 
simulations.  

A comparison of experimental results for scattering and absorptive targets validate the 
common notion that it is more challenging to locate and image scattering targets than 
absorptive targets in a highly scattering medium. Also the lateral (x, y) positions are 
determined with higher accuracy than the axial (z) position. Overall the TROT-retrieved target 
positions are in good agreement with the known positions. 

6. Discussion 

The article presents the development of time reversal imaging approach with subspace 
classification, MUSIC in the optical domain. The results from experiment and simulation 
show that TROT is a faster and less computation intensive approach for detecting small 
targets in highly scattering turbid media and determining their locations in 3-D than other 
inverse image reconstruction techniques. While the dominant features in the pseudo spectrum 
are related to the square of the difference between the absorption (scattering) coefficient of the 
targets and that of the background, the approach does not directly determine these parameters. 
It is common for IIR approaches to estimate the optical properties of every voxel in the 
sample and identify target(s) from differences of these properties between the sample and the 
target(s), which is a considerably computation intensive undertaking. On the contrary, TROT 
identifies the targets as poles of the pseudo spectrum and focuses on determining their 
positions, which do not require as much computation time. Other IIR approaches involve 
iteration, while TROT is non-iterative. In TROT the data dimension is lower compared to 
other IIR approaches, which enables analysis and utilization of very large data sets. These two 
features together make TROT faster. Fast image reconstruction algorithms are of particular 
interest. 

It was observed that lateral (x, y) positions are better determined than the depth (z). Also 
the spatial profile is more spread out along z compared to that along x, y. We ascribe this 
difference to fewer data along z-direction compared to those along x-y planes. Addition of 
another set of data with light incident and signal collected perpendicular to the z-direction is 
expected to further improve resolution in this dimension. Even without that addition, TROT 
determines the target position well. 

While we have used slab geometry and CW illumination, the TROT approach may be used 
for other geometries (such as, cylindrical, and spherical), different types of illumination (e.g. 
frequency domain and pulsed) and different models for light propagation through the medium. 
Application and adaption of the TROT formalism to inhomogeneous media and extended 
targets may require careful consideration of several factors. In a non-uniform, inhomogeneous 
medium, structures other than the desired targets may appear as “false targets” and may 
interfere with identification of “real targets”. However, as long as the contributions to the 
signal by any false target is smaller than that made by real targets, TROT with MUSIC will be 
useful in detecting and locating targets, by choosing a proper threshold to separate the signal 
and noise subspaces. What is even more important, expected wavelength dependence of the 
target spectroscopic properties could be used to assess the difference between the real and 
false targets in experiments using multi-wavelength interrogation of the sample. 

The TROT formalism presented in this article is particularly suited for point-like targets 
requiring fewer eigenvectors in the signal subspace to construct a pseudo spectrum. However, 
for extended finite-size targets, the formalism needs to be modified and much more 
eigenvectors may be needed to calculate the pseudo spectrum [40,60,61]. These interesting 
problems for further study are currently being pursued. 
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detection of breast cancer and prevention of micro-metastases 
 

Abstract of a pre-proposal submitted to the Idea Award (collaborative option) of BCRP 2011 by 
S. K. Gayen (Initiating PI) and Valeria Balogh-Nair (Collaborating PI) 

City College of New York  

Research Idea 
The objective of the proposed research is to develop multi-functional, tumor-targeting nanocomposites 
and near-infrared (NIR) optical imaging approaches for early detection of breast cancer, and prevention 
of micro-metastases that are respo nsible for m ajority of breast cancer m ortality. The nanocomposite 
synthesis will use a m ultivalent dendrimer (a class of organic m acromolecules) platform to incorporate 
fluorescent moieties (e.g., semiconductor quantum dots, or gold/silv er nanoparticles) as contrast agents 
for imaging, and chemokine mimics for selective targeting of cancer cells and prevention of metastases. 
The high affinity of che mokine mimic’s ligands for chemokine CXCR4 receptors will ensure selective 
delivery of the nanoco mposite to the ta rget. A multi-source NIR pr obing and multi-de tector signal 
acquisition arrangement along with a tim e-reversal image reconstruction algorithm will be used for fast 
detection of tumor and determination of its location in three dimensions.  

Impact and Innovation 
The major impact of the proposed research is that it has th e potential to provide a modality for early  
detection of breast cancer, and for prevention of  metastases, the major cause of  mortality. A broader 
potential impact is that the approach could be extende d to other cancers using chem okine mimics 
directed to other chemokine receptors.  
The project is highly innovative in many ways. First, the synthesis process brings together the concept of 
multivalency, the idea of chemokine mimics for prevention of cancer cell migration, and use of 
dendrimers as stabilizers and nanoreactors for contrast agent synthesis. A combination of these novel 
ideas is proposed, to the best of our knowledge for the first time, as a multi-prong approach to fight the 
menace of breast cancer. Second, the affinity of the chemokine mimics to seven helix chemokine 
CXCR4 receptors obviates the need for a targeting vector.  The chemokine mimics will play the dual 
role of: (1) “homing devices” for selective delivery of the nanocomposite to the tumor sites; and (2) 
“prevention agents” interacting with the chemokine receptor sites to inhibit metastases. Third, the 
efficacy of noninvasive NIR imaging approach for early detection and potential diagnosis will be 
significantly enhanced through design of efficient contrast agent. Fourth, the idea of time-reversal 
optical tomography (TROT) is a new paradigm in diffusive optical tomographic (DOT) imaging. While 
currently pursued DOT approaches are iterative and computation time intensive, TROT is non-iterative 
and will be faster, which is a necessary condition for real-time imaging. TROT is designed for detecting 
and locating small targets and will be suited for early detection when tumors are small. Finally, the 
dendrimer platform with multivalent surface will enable incorporation of moieties that enhance other 
imaging modalities, such as, magnetic resonance imaging, enabling development of sought-after dual or 
multimodal imaging modules.  
 
 
 




